Skip to main content

Advertisement

Log in

Deterministic linear-hexagonal path traversal scheme for localization in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recent trends of using wireless sensor network in various applications have reduced the significance of human intervention greatly. Due to the cost efficiency and energy constraint nature of wireless sensor network, mobile anchor nodes are preferred over the static ones for localization and thus reducing the amount of GPS modules required to be associated within sensor region. Use of mobile anchor node requires traversal path optimization so that average localization error as well the traversed path length is reduced. Specific localization algorithm is used in literature to measure average localization error, which results in different preference of traversal scheme. In order to encounter the problem and to make comparison among the traversal schemes more generalized, a novel evaluation metric namely Inverted Coverability, a variation of ANOVA, is proposed. Besides this, a novel traversing path scheme, Linear-Hexagonal (LH) traversal scheme is proposed. Mathematical analysis and the result shows better performance of the proposed scheme with respect to the total path traversed, number of beacon points, Inverted Coverability and average localization error over other geometric based deterministic path planning schemes like DOUBLE SCAN, CIRCLES, Z-curve, and Polygon approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aderohunmu, F. A., & Deng, J. D., et al. (2009). An enhanced stable election protocol (SEP) for clustered heterogeneous WSN. Department of Information Science, University of Otago, New Zealand.

  2. Hill, J., Horton, M., Kling, R., & Krishnamurthy, L. (2004). The platforms enabling wireless sensor networks. Communications of the ACM, 47(6), 41–46.

    Article  Google Scholar 

  3. Hadir, A., Zine-Dine, K., Bakhouya, M., El Kafi, J., & El Ouadghiri, D. (2018). Towards an integrated geographic routing approach using estimated sensors position in WSNs. In 2018 International Conference on High Performance Computing & Simulation (HPCS) (pp. 943–948). IEEE.

  4. Al-Mashaqbeh, G. A., Al-Karaki, J. N., Al-Rousan, M., Raza, A., Abbas, H., & Pasha, M. (2018). Joint geographic and energy-aware routing protocol for static and mobile wireless sensor networks. Adhoc & Sensor Wireless Networks, 41, 165–190.

    Google Scholar 

  5. Swain, R. R., Khilar, P. M., & Bhoi, S. K. (2018). Heterogeneous fault diagnosis for wireless sensor networks. Ad Hoc Networks, 69, 15–37.

    Article  Google Scholar 

  6. Swain, R. R., & Khilar, P. M. (2017). Composite fault diagnosis in wireless sensor networks using neural networks. Wireless Personal Communications, 95(3), 2507–2548.

    Article  Google Scholar 

  7. Stoleru, R., He, T., & Stankovic, J. A. (2004). Walking GPS: A practical solution for localization in manually deployed wireless sensor networks. In 29th Annual IEEE International Conference on Local Computer Networks (pp. 480–489). IEEE.

  8. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  9. He, T., Huang, C., Blum, B, M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on Mobile computing and networking (pp. 81–95). ACM.

  10. Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52(4), 2419–2436.

    Article  Google Scholar 

  11. Artemenko, O., Rubina, A., Golokolenko, O., & Mitschele-Thiel, A. (2014). How different trajectories of moving beacons influence the localization of nodes in disaster scenarios using wireless communication. In 2014 International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 367–372). IEEE.

  12. Dixon, W. F. J., & Massey, F. J, Jr. (1957). Introduction to statistical analysis (2nd ed., pp. 93–103). New York: McCraw-Hill Book Company.

    MATH  Google Scholar 

  13. Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., et al. (1998). Statistical practices of educational researchers: An analysis of their anova, manova, and ancova analyses. Review of Educational Research, 68(3), 350–386.

    Article  Google Scholar 

  14. Sichitiu, M. L., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. In 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (pp. 174–183). IEEE.

  15. Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577–2592.

    Article  Google Scholar 

  16. Huang, R., & Zaruba, G. V. (2007). Static path planning for mobile beacons to localize sensor networks. In Fifth annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2007. PerCom Workshops’ 07 (pp. 323–330). IEEE.

  17. Jiang, J., Han, G., Xu, H., Shu, L., & Guizani, M. (2011). Lmat: Localization with a mobile anchor node based on trilateration in wireless sensor networks. In 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (pp. 1–6). IEEE.

  18. Geng, F., & Xue, S. (2011). Mobile beacon node path scheme in arbitrary region for wireless sensor networks. In 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT) (Vol. 7, pp. 3429–3433). IEEE.

  19. Cui, H., Meng, X., & Hua, R., et al. (2013). Mobile anchor assisted localization in wireless sensor networks with regular polygon path. In 2013 4th IEEE International Conference on Software Engineering and Service Science (ICSESS) (pp. 389–392). IEEE.

  20. Rezazadeh, J., Moradi, M., Ismail, A. S., & Dutkiewicz, E. (2014). Superior path planning mechanism for mobile beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal, 14(9), 3052–3064.

    Article  Google Scholar 

  21. Chao, J., Han, G., Zhu, C., Guo, H., & Shu, L. (2013). Performance evaluation of dv-hop localization algorithm with mobility models for mobile wireless sensor networks. In 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1827–1832). IEEE.

  22. Peng, B., & Li, L. (2015). An improved localization algorithm based on genetic algorithm in wireless sensor networks. Cognitive Neurodynamics, 9(2), 249–256.

    Article  Google Scholar 

  23. Hui, X., Zhiyuan, C., Beiya, Y., & Rongpei, N. (2015). Tdoa localization algorithm with compensation of clock offset for wireless sensor networks. China Communications, 12(10), 193–201.

    Article  Google Scholar 

  24. Singh, M., & Khilar, P. M. (2016). An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network. Wireless Networks, 22(8), 2537–2550.

    Article  Google Scholar 

  25. Singh, M., & Khilar, P. M. (2017). Mobile beacon based range free localization method for wireless sensor networks. Wireless Networks, 23(4), 1285–1300.

    Article  Google Scholar 

  26. Singh, M., & Khilar, P. M. (2017). A range free geometric technique for localization of wireless sensor network (WSN) based on controlled communication range. Wireless Personal Communications, 94(3), 1359–1385.

    Article  Google Scholar 

  27. Baoguo, Y., Wang, Ya., He, C., Yan, X., & Luo, Q. (2016). A least square-based self-adaptive localization method for wireless sensor networks. Mathematical Problems in Engineering. https://doi.org/10.1155/2016/1892893.

    Article  Google Scholar 

  28. Wang, Y., Xuehan, W., & Cheng, L. (2018). A novel non-line-of-sight indoor localization method for wireless sensor networks. Journal of Sensors. https://doi.org/10.1155/2018/3715372

    Article  Google Scholar 

  29. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2004). Impact of radio irregularity on wireless sensor networks. In Proceedings of the 2nd international conference on Mobile systems, applications, and services (pp. 125–138). ACM.

  30. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2006). Models and solutions for radio irregularity in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 2(2), 221–262.

    Article  Google Scholar 

  31. Singh, M., Bhoi, S. K., & Khilar, P. M. (2017). Geometric constraint-based range-free localization scheme for wireless sensor networks. IEEE Sensors Journal, 17(16), 5350–5366.

    Article  Google Scholar 

  32. Hales, T. C. (2000). Cannonballs and honeycombs. Notices-American Mathematical Society, 47(4), 440–449.

    MathSciNet  MATH  Google Scholar 

  33. Hales, T. C. (2001). The honeycomb conjecture. Discrete & Computational Geometry, 25(1), 1–22.

    Article  MathSciNet  Google Scholar 

  34. Chia-Ho, O., & He, W.-L. (2013). Path planning algorithm for mobile anchor-based localization in wireless sensor networks. IEEE Sensors Journal, 13(2), 466–475.

    Article  Google Scholar 

  35. Hauberg, S., Eaton, J. W., Bateman, D., & Wehbring, R. (2014). GNU Octave version 3.8.1 manual: A high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform. ISBN 1441413006.

  36. Ssu, K.-F., Ou, C.-H., & Jiau, H. C. (2005). Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 54(3), 1187–1197.

    Article  Google Scholar 

  37. Galstyan, A., Krishnamachari, B., Lerman, K., & Pattem, S. (2004). Distributed online localization in sensor networks using a moving target. In Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004 (pp. 61–70). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tisan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Swain, R.R., Khilar, P.M. et al. Deterministic linear-hexagonal path traversal scheme for localization in wireless sensor networks. Wireless Netw 26, 5437–5453 (2020). https://doi.org/10.1007/s11276-020-02404-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02404-1

Keywords

Navigation