Skip to main content

Energy efficient multi-beacon guard method for periodic data gathering in time-synchronized WSN

Abstract

In periodic data-gathering, sensors can switch on the transceiver only during packet transmission to save energy. Exact clock-synchronization is challenging to achieve because of error present in synchronization protocols. Clock-disagreement increases with time in the absence of synchronization. This paper proposes an Energy-efficient Multi Beacon Guard method (EMBG) to decrease the energy consumption by minimizing the awake time of sender and receiver by periodically switching on and off the receivers during the guard-time. We determine the optimal number-of-times the receiver needs to wake up along with the wake-up intervals to collectively minimize the total energy consumption of the sender–receiver pair during transmission. This paper shows the effectiveness of EMBG in energy conservation and compares with existing approaches using ns2 simulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. On the other hand, the packets are exchanged without synchronization in asynchronous techniques [9, 10]. In this work we are interested in synchronous s/w scheduling.

  2. Note that, periodic events like temperature or pressure are detected by the corresponding sensing device. In this work, we assume that the communication device, which consumes more energy, is switched on only when a communication is expected.

  3. The non-determinism occurs as a result of an imperfect crystal oscillator and governs by several environmental factors such as: pressure, temperature, radiation and magnetic fields, etc. Moreover, estimation errors involve in clock-synchronization further add this non-determinism.

  4. Note that, \(\tau _p\) denotes the mean of the distribution. The scheduled arrival time of the message is nonzero in a real system. If we assume \(\tau _p = 0\), then we actually shift the mean of the distribution and keep the standard deviation same. The analysis derived in this paper holds for a node in a real system given that the corresponding mean needs to be adjusted by \(\tau _p\).

  5. We also assume that the delay between a sender wakes up and the message arrives at the receiver is negligible. In other words, the actual wake-up time of the sender follows the same distribution of \(\tau _p'\).

References

  1. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  3. Wu, Y., Fahmy, S., & Shroff, N. B. (2010). Sleep/wake scheduling for multi-hop sensor networks: non-convexity and approximation algorithm. Ad Hoc Networks, 8(7), 681–693.

    Article  Google Scholar 

  4. Sadhukhan, D., & Rao, S. V. (2019). Minimum cost event driven wsn with spatial differentiated qos requirements. Wireless Networks, 25(7), 3899–3915.

    Article  Google Scholar 

  5. Sadhukhan, D., & Rao, S. V. (2016). Critical sensor density for event-driven data-gathering in delay and lifetime constrained wsn. In International conference on wired/wireless internet communication (pp. 309–320). Springer

  6. Wu, Y., Fahmy, S., & Shroff, N. (2009). Optimal sleep/wake scheduling for time-synchronized sensor networks with qos guarantees. IEEE/ACM Transactions on Networking, 17(5), 1508–1521.

    Article  Google Scholar 

  7. Habibi, J., Ghrayeb, A., & Aghdam, A. (2013). Energy-efficient cooperative routing in wireless sensor networks: a mixed-integer optimization framework and explicit solution. IEEE Transactions on Communications, 61(8), 3424–3437.

    Article  Google Scholar 

  8. Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.

    Article  Google Scholar 

  9. Kim, J., Lin, X., Shroff, N., & Sinha, P. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528.

    Article  Google Scholar 

  10. Kim, J., Lin, X., & Shroff, N. (2011). Optimal anycast technique for delay-sensitive energy-constrained asynchronous sensor networks. IEEE/ACM Transactions on Networking, 19(2), 484–497.

    Article  Google Scholar 

  11. Sadhukhan, D., & Rao, S. V. (2017). Effect of clock skew in event driven, delay constrained heterogeneous wsn with anycast. Wireless Personal Communication, 97(4), 4967–4980.

    Article  Google Scholar 

  12. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd international conference on embedded networked sensor systems (pp. 95–107). ACM.

  13. Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-mac: A short preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th international conference on embedded networked sensor systems (pp. 307–320). ACM.

  14. Schurgers, C., Tsiatsis, V., & Srivastava, M. B. (2002) Stem: Topology management for energy efficient sensor networks. In Aerospace conference proceedings, 2002, IEEE (Vol. 3, p. 3). IEEE.

  15. Sundararaman, B., Buy, U., & Kshemkalyani, A. D. (2005). Clock synchronization for wireless sensor networks: A survey. Ad Hoc Networking, 3(3), 281–323.

    Article  Google Scholar 

  16. Lasassmeh, S., & Conrad, J. (2010). Time synchronization in wireless sensor networks: A survey. In Proceedings of the IEEE SoutheastCon (pp. 242–245).

  17. Elson, J, Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. In Proceedings of the 5th symposium on operating systems design and implementation (pp 147–163). New York, USA: ACM.

  18. Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp 138–149). New York, USA: ACM.

  19. Maróti. M, Kusy, B., Simon, G., Lédeczi, A. (2004). The flooding time synchronization protocol. In: Proceedings of the 2nd international conference on embedded networked sensor systems. ACM, New York, USA, pp 39–49

  20. Ganeriwal, S., Tsigkogiannis, I., Shim, H., Tsiatsis, V., Srivastava, M., & Ganesan, D. (2009). Estimating clock uncertainty for efficient duty-cycling in sensor networks. IEEE/ACM Transactions on Networking, 17(3), 843–856.

    Article  Google Scholar 

  21. van Greunen, J., & Rabaey, J. (2003). Lightweight time synchronization for sensor networks. In Proceedings of the 2nd ACM international conference on wireless sensor networks and applications (pp. 11–19). New York, USA: ACM.

  22. Sichitiu, M., & Veerarittiphan, C. (2003). Simple, accurate time synchronization for wireless sensor networks. IEEE Wireless Communications and Network, 2, 1266–1273.

    Google Scholar 

  23. Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.

    Article  Google Scholar 

  24. Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5g-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.

    Article  Google Scholar 

  25. Liu, X., & Zhang, X. (2018). Rate and energy efficiency improvements for 5g-based iot with simultaneous transfer. IEEE Internet of Things Journal, 6, 5971–5980.

    Article  Google Scholar 

  26. Liu, X., Jia, M., Zhang, X., & Lu, W. (2018). A novel multi-channel internet of things based on dynamic spectrum sharing in 5g communication. IEEE Internet of Things Journal, 6, 5962–5970.

    Article  Google Scholar 

  27. Sichitiu, M. (2004). Cross-layer scheduling for power efficiency in wireless sensor networks. In Twenty-third annual joint conference of the IEEE computer and communications societies (Vol. 3, pp. 1740–1750).

  28. Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. J. (2003). Energy-efficient collision-free medium access control for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 181–192). New York, NY, USA: ACM

  29. Zhao, Y., Wu, J., Li, F., & Lu, S. (2010). VBS: Maximum lifetime sleep scheduling for wireless sensor networks using virtual backbones. In: INFOCOM, 2010 proceedings IEEE (pp. 1–5).

  30. Jang, U., Lee, S., & Yoo, S. (2012). Optimal wake-up scheduling of data gathering trees for wireless sensor networks. Journal of Parallel and Distributed Computing, 72(4), 536–546.

    Article  Google Scholar 

  31. Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle mac with scheduled channel polling. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (pp. 321–334). New York, NY, USA : ACM.

  32. Bober, W., & Bleakley, C. J. (2014). Bailighpulse: a low duty cycle data gathering protocol for mostly-off wireless sensor networks. Computer Networks, 69, 51–65.

    Article  Google Scholar 

  33. Li, Y., Ye, W., Heidemann, J., & Kulkarni, R. (2008). Design and evaluation of network reconfiguration protocols for mostly-off sensor networks. Ad Hoc Networks, 6(8), 1301–1315.

    Article  Google Scholar 

  34. Saw, J. G., Yang, M. C., & Mo, T. C. (1984). Chebyshev inequality with estimated mean and variance. The American Statistician, 38(2), 130–132.

    MathSciNet  Google Scholar 

  35. Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, 23(4), 493–507.

    MathSciNet  Article  Google Scholar 

  36. Dominici, D. E. (2003). The inverse of the cumulative standard normal probability function. Integral Transforms and Special Functions, 14(4), 281–292.

    MathSciNet  Article  Google Scholar 

  37. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In Proceedings of the twenty-first annual joint conference of the IEEE computer and communications societies, IEEE (Vol. 3, pp. 1567–1576).

  38. van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient mac protocol for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 171–180). New York, NY, USA: ACM.

  39. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on (Vol. 2, p. 10).

  40. Ding, P., Holliday, J., & Celik, A. (2005). Distributed energy-efficient hierarchical clustering for wireless sensor networks. In Proceedings of the First IEEE international conference on distributed computing in sensor systems (pp. 322–339). Berlin: Springer.

  41. Johnson, M., Healy, M., van de Ven, P., Hayes, M. J., Nelson, J., Newe, T., & Lewis, E. (2009). A comparative review of wireless sensor network mote technologies. In SENSORS, 2009 IEEE (pp. 1439–1442). IEEE.

  42. Ma, J., Lou, W., Wu, Y., yang Li X., & Chen, G. (2009). Energy efficient tdma sleep scheduling in wireless sensor networks. In Proceedings of the IEEE INFOCOM.

  43. Handy, M., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In 4th international workshop on mobile and wireless communications network, 2002 (pp. 368–372). IEEE.

  44. Xia, H., Zhang, Rh., Yu, J., & Zk, Pan. (2016). Energy-efficient routing algorithm based on unequal clustering and connected graph in wireless sensor networks. International Journal of Wireless Information Networks, 23(2), 141–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Sadhukhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Assume the actual wake-up time of sender follows normal distribution and the guard-time is divided into \(N_r\) intervals. The expected number of time the receiver wakes up for a successful packet transmission is \(\frac{N_r+1}{2}\).

Proof

The receiver wakes up, sends the beacon message, and waits for round trip time (RTT) to receive data from the sender, at times \(t_i, 1 \le i \le N_r \). The receiver has to wake up \(i+1\) times if the sender wakes up in the interval \((t_i,t_{i+1}]\), assuming propagation delay is negligible. In other words, the expected number of times the receiver wakes up can be estimated from the probability of the sender wakes up within the time interval \((t_i,t_{i+1}]\), times the number of times the receiver wakes up. Assume, \(P(X=x:t_i>x \le t_{i+1})\) denotes the probability of the sender wakes up within the \(i^{th}\) interval, and for such a case the receiver needs to wake up \(i+1\) times before a successful transmission. Moreover, let \(P(X=x:x\le t_{1})\) denotes the probability of the sender wakes up before the first interval and for such a case the receiver sends one beacon message before a successful transmission. Hence, the expected number-of-times the receiver wakes up is,

$$\begin{aligned}&P(X=x:x\le t_{1}) \times 1 \\&\qquad + \sum \limits _{i = 1}^{{N_r-1}} {P(X = x:{t_i} > x \le {t_{i + 1}}) \times (i + 1)} \\&\quad =\frac{N_r + 1}{2}. \end{aligned}$$

\(\square \)

Lemma 2

Assume the actual time of the sender follows normal the distribution within the interval \([\tau _p - T_g,\tau _p + T_g]\), where \(\tau _p\), \(T_g\) respectively denotes the scheduled wake-up time of the sender and the half of the guard-time. The expected waiting time of a sender for a successful packet transmission is \(\frac{T_g}{N_r}\).

Proof

If the area under the normal curve is equally divided into \(N_{r}\) regions, then the expected waiting time of the sender is,

$$\begin{aligned} W_s&= \int _{-T_g}^{t_{1}} P(X=x)( t_{1} - x )dx \\&\quad + \sum \limits _{i = 1}^{{N_r-1}} {\int _{{t_i}}^{{t_{i + 1}}} P (X = x)({t_{i + 1}} - x)dx}. \end{aligned}$$

If \(N_r\) is odd, we can rewrite the equation as,

$$\begin{aligned} W_s&=\int _{ - T_g}^{{t_1}} P (X = x)({t_1} - x)dx \nonumber \\&\quad + \int _{ {t_{{N_{r - 1}}}}}^{{t_{{N_r}}}} P (X = x)({t_1} - x)dx \nonumber \\&\quad + \sum \limits _{i = 1}^{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor - 1} {\int _{{t_i}}^{{t_{i + 1}}} P (X = x)({t_{i + 1}} - x)dx}\nonumber \\&\quad + \sum \limits _{i = 1}^{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor - 1} {\int _{{t_{{N_r} - (i + 1)}}}^{{t_{{N_r} - i}}} P (X = x)({t_{{N_r} - (i)}} - x)dx} \nonumber \\&\quad + \int _{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}}^{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor + 1}}} P (X = x)({t_{_{\left\lfloor {{N_{r/2}}} \right\rfloor + 1}}} - x)dx. \end{aligned}$$
(36)

In order to prove this lemma, we first show that \(\int _{{t_i}}^{{t_{i + 1}}} P (X = x)({t_{i + 1}} - x)dx + \int _{{t_{{N_{r} - (i + 1)}}}}^{{t_{{N_r} - i}}} P (X = x)({t_{{N_r} - i}} - x)dx = \frac{1}{{{N_r}}}\left| {{t_i} - {t_{i + 1}}} \right|. \)

$$\begin{aligned}&\int _{{t_i}}^{{t_{i + 1}}} P (X = x)({t_{i + 1}} - x)dx + \int _{{t_{{N_{r} - (i + 1)}}}}^{{t_{{N_r} - i}}} P (X = x)({t_{{N_r} - i}} - x)dx \\&\quad = \int \limits _{{t_i}}^{{t_{i + 1}}} {P(X = x)({t_{i + 1}})dx} - \frac{{ - \sigma }}{{\sqrt{2\pi } }}\left( {{e^{\frac{{ - {t_{i + 1}}^2}}{{2{\sigma ^2}}}}} - {e^{\frac{{ - {t_i}^2}}{{2{\sigma ^2}}}}}} \right) \\&\qquad + \int \limits _{{t_{{N_{r} - (i + 1)}}}}^{{t_{{N_{r} - i}}}} {P(X = x)({t_{{N_{r} - i}}})dx} - \frac{{ - \sigma }}{{\sqrt{2\pi } }}\left( {{e^{\frac{{ - {t_{{N_{r - i}}}}^2}}{{2{\sigma ^2}}}}} - {e^{\frac{{ - {t_{{N_{r} - (i + 1)}}}^2}}{{2{\sigma ^2}}}}}} \right) , \\& \text {by substituting } P(X=x)=\frac{1}{{{\sigma _p}\sqrt{2\pi } }}{e^{\frac{{ - {x^2}}}{{2\sigma _p^2}}}} \end{aligned}$$

Since the function is symmetric on both side of mean, and \(\left\| { t_{i} - {t_{i+1}}} \right\| = \left\| {t_{{N_{r} - (i + 1)}}} - {t_{{N_{r} - (i)}}} \right\| \), \(\left| {{t_{{N_r} - i}}} \right| = \left| {{t_i}} \right| \) for \(i \le \left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor - 1\). The above equation can be rewritten as,

$$\begin{aligned}&{t_{i + 1}}\int _{{t_i}}^{{t_{i + 1}}} P (X = x)dx + {t_{{N_r} - i}}\int _{{t_{{N_{r} - (i + 1)}}}}^{{t_{{N_r} - i}}} P (X = x)dx \nonumber \\&\quad = {t_{i + 1}}\frac{1}{{{N_r}}} + {t_{{N_r} -i}}\frac{1}{{{N_r}}}, \,\,\, \text {by substituting }P(X=x)=\frac{1}{{{\sigma _p}\sqrt{2\pi } }}{e^{\frac{{ - {x^2}}}{{2\sigma _p^2}}}} \nonumber \\&\quad = \frac{1}{{{N_r}}}\left| {{t_{i + 1}} - {t_i}} \right| . \end{aligned}$$
(37)

Since the midpoint of the middle interval \([{t_{\left| {\frac{{{N_r}}}{2}} \right| }},{t_{\left| {\frac{{{N_r}}}{2}} \right| + 1}}]\) is mean of PDF, we can write \(\int _{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}^{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor +1}} P(X=x)( t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor +1} - x )dx\) of Eq. 36 as,

$$\begin{aligned}&\int _{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } }}^0 P (X = x)({t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}})dx - \int _{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } }}^0 P (X = x)(x)dx \\&\quad + \int _0^{{t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}}} P (X = x)({t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}})dx - \int _0^{{t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}}} P (X = x)(x)dx\\&\quad ={t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}}\int \limits _{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}}^0 {P(X = x)dx} - \frac{{ - \sigma }}{{\sqrt{2\pi } }}\left( {1 -{e^{\frac{{ - {t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}^2}}{{2{\sigma ^2}}}}}} \right) \\&\qquad + {t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}}\int \limits _0^{{t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}}} {P(X = x)dx} - \frac{{ - \sigma }}{{\sqrt{2\pi } }}\left( {{e^{\frac{{ - {{({t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}})}^2}}}{{2{\sigma ^2}}}}} - 1} \right) , \\& \text {by substituting }P(X=x)=\frac{1}{{{\sigma _p}\sqrt{2\pi } }}{e^{\frac{{ - {x^2}}}{{2\sigma _p^2}}}} \end{aligned}$$

As we know that the function is symmetric in both side of the mean, hence \(\left| {{t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } + 1}}} \right| = \left| {{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}} \right| \) and the above expression becomes,

$$\begin{aligned}&\int _{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}^{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor +1}} P(X=x)( t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor +1} - x )dx \nonumber \\&\quad = {t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor + 1}}\int _{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}}^0 P (X = x)dx + {t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor + 1}}\int _0^{{t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor + 1}}} P (X = x)dx, \nonumber \\&\quad =t_{{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor } +1}\times \frac{1}{N_r}. \end{aligned}$$
(38)

Note that \(t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor +1}\) can be written as \(\left| {0 - {t_{\left\lfloor {\frac{{{N_r}}}{2}} \right\rfloor }}} \right| \). Similarly, \(\int _{ - T_g}^{{t_1}} P (X = x)({t_1} - x)dx + \int _{ {t_{{n_{r - 1}}}}}^{{t_{{N_r}}}} P (X = x)({t_1} - x)dx = \frac{1}{{{N_r}}}\left| {{t_1} - T_g} \right|. \) Hence Eq. 36 can be written as,

$$\begin{aligned} W_s&= \frac{1}{{{N_r}}}\left| {{t_1} - T_g} \right| + \frac{1}{{{N_r}}}\left( {\sum \limits _{i = 1}^{\left\lfloor {\frac{{{N_r}}}{2} - 1} \right\rfloor } {\left| {{t_i} - {t_{i + 1}}} \right| } } \right) \\&\quad + \frac{1}{{{N_r}}}\left| {{t_{\left| {\frac{{{N_r}}}{2}} \right| }} - 0} \right| , \quad \text {by substituting Eqs.~}37, 38. \\&= \frac{T_g}{{{N_r}}}. \end{aligned}$$

Similarly, it can be proved for \(N_r\) is even. \(\square \)

Lemma 3

The expression for the expected energy consumption in the multi-beacon approach given in Eq. 9 is convex with respect to \(N_r\) and the optimal value occurs at

$$\begin{aligned} \hat{N_r}= \sqrt{\frac{2P_{idle} \times T_g}{E_{sw}+E_{txbcn}+ P_{idle}T_{rtt}}} \end{aligned}$$
(39)

where \(N_r,P_{idle},T_g,E_{sw},\) \(E_{txbcn},T_{rtt}\) denote the number-of-times the receiver wakes up, power required for idle listening, guard time, transition energy required from sleep to awake state, energy required to transmit a beacon and average round trip time respectively.

Proof

The total expected energy consumption in multi-beacon approach (\(E_{mb}\)) is

$$\begin{aligned} E_{mb}&= ( E_{sw}+E_{txbcn}+ P_{idle}T_{rtt} )\frac{\hat{N_{r}}+1}{2}+ E_{rxdata} \nonumber \\&\quad + E_{txack} + E_{sw} + P_{idle}{\frac{T_g}{\hat{N_{r}}}} + E_{rxbcn} \nonumber \\&\quad +E_{txdata} + E_{rxack}. \end{aligned}$$
(40)

The function derived in Eq. 40 is convex because it is second order differentiable, \( \frac{\mathrm {d} }{\mathrm {d} \hat{N_r}}(\frac{\mathrm {d} }{\mathrm {d} \hat{N_r}} {E_{mb}}(\hat{N_r})) = P_{idle}*\frac{1}{\hat{N_r}^3} > 0\) since \(P_{idle},\hat{N_r} > 0\). We can find the optimal value of \(E_{mb}\) occurs at,

$$\begin{aligned} \hat{N_r}= \sqrt{\frac{2P_{idle}(T_g)}{E_{sw}+E_{txbcn}+ P_{idle}T_{rtt}}}, \end{aligned}$$
(41)

from the equation \(\frac{\mathrm {d} }{\mathrm {d} \hat{N_r}} ({E_{mb}}(\hat{N_r}))=0\). \(\square \)

Lemma 4

The expected energy consumption in guard-time approach is

$$\begin{aligned} E_{T_g}&= (E_{sw} + E_{txdata} + E_{rxack}) \nonumber \\&\quad + ( E_{sw}+P_{idle}\times T_g + E_{rxdata} +E_{txack}). \end{aligned}$$
(42)

Proof

In guard time approach, the receiver is awake during the whole guard-time and the sender sends the data packet as soon as it wakes up. As mentioned earlier wake up times of the sender follows the normal distribution within the guard time. If x denotes the instant when the sender wakes up, then the amount of time the receiver waits is \(T_g+x\), where \(-T_g \le x \le T_g\). Hence, the expected amount of time the receiver waits is

$$\begin{aligned} W_{r\_T_g}&= \int _{-T_g}^{T_g} P(X=x)( T_g+ x )dx, \\&= T_g \int \limits _{ - T_g}^{T_g} {\left( {\frac{1}{{\sigma \sqrt{2\pi } }}{e^{\frac{{ - {x^2}}}{{2{\sigma ^2}}}}}} \right) } \,dx + \int \limits _{ - T_g}^{T_g} {\left( {\frac{1}{{\sigma \sqrt{2\pi } }}{e^{\frac{{ - {x^2}}}{{2{\sigma ^2}}}}}} \right) } \,\,x\,\,dx, \\& \text {by substituting } P(X=x)=\frac{1}{{{\sigma _p}\sqrt{2\pi } }}{e^{\frac{{ - {x^2}}}{{2\sigma _p^2}}}} \\&= T_g. \end{aligned}$$

The receiver sends an acknowledgment after receiving the data packet from the sender and switches off the transceiver. Hence, the expected energy consumption of the receiver using the notations given in Table 1 is given as follows: \(E_{r\_T_g} = E_{sw}+P_{idle}\times {(W_{r-T_g})} + E_{rxdata} +E_{txack}.\) The energy consumption of sender is \(E_{s\_T_g} = E_{sw} + E_{txdata} + E_{rxack}\). Hence, the total expected energy consumption is

$$\begin{aligned} E_{T_g}&= (E_{sw} + E_{txdata} + E_{rxack}) \nonumber \\&\quad + ( E_{sw}+P_{idle}{(W_{r\_T_g})} + E_{rxdata} +E_{txack} ). \end{aligned}$$
(43)

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, D., Rao, S.V. Energy efficient multi-beacon guard method for periodic data gathering in time-synchronized WSN. Wireless Netw 26, 5337–5354 (2020). https://doi.org/10.1007/s11276-020-02400-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02400-5

Keywords

  • Synchronization
  • Energy consumption
  • Wireless sensor networks
  • Ad-hoc networks