Skip to main content
Log in

Performance analysis of electrically coupled SRR bowtie antenna for wireless broadband communications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents a broadband Bowtie antenna with metamaterial periodical structure for broadband wireless systems and emerging 5G communication frequency band. The modified Bowtie antenna operating from 4 to 6.8 GHz with electrically coupled split-ring resonator (ECSRR) unit cells are proposed and analyzed. In two element Bowtie antenna, the third tuning arms are included to improve matching in the proposed operating frequency band. Four different shaped electrically coupled split-ring resonator (triangle, elliptical, hexagon and pentagon) with negative permeability and negative permittivity metamaterial unit cells are proposed and their reflection properties are analyzed. The triangle shaped ECSRR have the broadband reflection phase property which can be used to enhance the gain of the Bowtie antenna. The 5 \(\times\) 6 periodical ECSRR unit cell embedded with modified Bowtie antenna in FR4 epoxy substrate (\(\epsilon _r\) = 4.4, thickness = 1.6 mm, tan \(\delta\) = 0.025) was designed and fabricated. The presented Bowtie antenna design achieves a wide impedance bandwidth of 50% from 4 to 6.8 GHz (S11 \(\le\) \(-\) 10 dB) and maximum gain of 5.75 dBi. The designed metamaterial periodical structure has the reflection bandwidth of 4–6 GHz within \(-\) 90\({^{\circ }}\) to + 90\({^{\circ }}\) in reflection phase and zero degrees phase reflection at 5.5 GHz. The metamaterial embedded bowtie antenna achieves a maximum gain of 11.08 dBi at 5.5 GHz. By tilting the metamaterial periodical structure, the major lobe direction of the modified Bowtie antenna can also be tilted. The experimental results show that the major lobe of the antenna can be tilted 34\({^{\circ }}\) approximately for 30\({^{\circ }}\) tilting of metamaterial structure with maximum gain of 9.8 dBi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Akyildiz, I. F., Kak, A., Khorov, E., Krasilov, A., & Kureev, A. (2018). ARBAT: A flexible network architecture for QoE-aware communications in 5G systems. Comuputer Networks, 147, 262–279.

    Article  Google Scholar 

  2. Andrews, J. G., Buzzi, S., Choi, W., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  3. Dayo, Z.A., Cao, Q., Soothar, P. et.al. (2019) A compact coplanar waveguide feed bow-tie slot antenna for WIMAX, C and X band applications. In 2019 IEEE international conference on computational electromagnetics (ICCEM).

  4. Li, T., Zhai, H., Wang, X., et al. (2014). Frequency-reconfigurable bow-tie antenna for bluetooth, WiMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 14, 171–174.

    Article  Google Scholar 

  5. Ming-Tien, W., & Chuang, M.-L. (2014). Multibroadband slotted Bow-Tie monopole antenna. IEEE Antennas and Wireless Propagation Letters, 14, 887–890.

    Google Scholar 

  6. Ahdi Rezaeieh, S., Antoniades, M. A., & Abbosh, A. M. (2017). Miniaturized planar Yagi antenna utilizing capacitively-coupled folded reflector. IEEE Antennas and Wireless Propagation Letters, 16, 1977–1980.

    Article  Google Scholar 

  7. Liu, H. W., Jiang, H., Guan, X., et al. (2013). Single-feed slotted bowtie antenna for triband applications. IEEE Antennas and Wireless Propagation Letters, 12, 1658–1661.

    Article  Google Scholar 

  8. Wani, Z., Abegaonkar, M. P., & Koul, S. K. (2017). Gain enhancement of millimeter wave antenna with metamaterial loading. In 2017 International symposium on antennas and propagation.

  9. Rafiei, V., Karamzadeh, S., & Saygin, H. (2018). Millimetre-wave high-gain circularly polarised SIW end-fire bow-tie antenna by utilising semi-planar helix unit cell. Electronics Letters, 54(7), 411–412.

    Article  Google Scholar 

  10. Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Millimeter-wave high-gain siw end-fire bow-tie antenna. IEEE Transactions on Antennas and Propagation, 63(5), 2337–2342.

    Article  Google Scholar 

  11. Jiang, H., Si, L.-M., Hu, W., & Lv, X. (2019). A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications. IEEE Photonics Journal, 11(1), 1–9.

    Google Scholar 

  12. Dadgarpour, A., Zarghooni, B., Virdee, B. S., & Denidni, T. A. (2014). Beam tilting antenna using integrated metamaterial loading. IEEE Transactions on Antennas and Propagation, 62(5), 2874–2879.

    Article  Google Scholar 

  13. Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 15, 418–420.

    Article  Google Scholar 

  14. Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.

    Article  Google Scholar 

  15. Belenguer, A., Borja, A. L., & Boria, V. E. (2013). Balanced dual composite right/left-handed microstrip line with modified complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 12, 880–883.

    Article  Google Scholar 

  16. Falcone, F., Lopetegi, T., Baena, J. D., et al. (2004). Effective negative-\(\epsilon\) stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 14(6), 280–282.

    Article  Google Scholar 

  17. Lijuan, S., Naqui, J., Mata-Contreras, J., & Martin, F. (2015). Modeling and applications of metamaterial transmission lines loaded with Pairs of coupled complementary split-ring resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 15, 154–157.

    Google Scholar 

  18. Duran-Sindreu, M., Velez, A., & Siso, G. (2011). Recent advances in metamaterial transmission lines based on split rings. Proceedings of the IEEE, 99(10), 1701–1710.

    Article  Google Scholar 

  19. Horestani, A. K., Shaterian, Z., Naqui, J., et al. (2016). Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas. IEEE Transactions on Antennas and Propagation, 64(9), 3766–3776.

    Article  MathSciNet  Google Scholar 

  20. Horestani, A. K., Fumeaux, C., Al-Sarawi, S. F., & Abbott, D. (2012). Split ring resonators with tapered strip width for wider bandwidth and enhanced resonance. IEEE Microwave and Wireless Components Letters, 22(9), 450–452.

    Article  Google Scholar 

  21. Lei, W., Soong, A. C. K., Jianghua, L., Yong, W., et al. (2020). 5G System Design An End to End Perspective (pp. 151–153). Springer.

  22. Li, X., Shi, X.-W., Hu, W., et al. (2013). Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication. IEEE Transaction on Antennas and Propagation, 12, 38839.

    Google Scholar 

  23. Gautam Kunwar, A.K., & Kanaujia, B.K. (2015). Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications. International Journal of Microwave and Wireless Technologies (In press).

  24. Zhai, H., Ma, Z., Han, Y., & Liang, C. (2013). A compact printed antenna for triple-band WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 6569.

    Article  Google Scholar 

  25. Huang, H., Liu, Y., Zhang, S., & Gong, S. (2015). Multiband metamaterial loaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 14, 662–665.

    Article  Google Scholar 

  26. Kim, I., & Rahmat-Samii, Y. (2015). Electromagnetic band gap-dipole sub-array antennas creating an enhanced tilted beams for future base station. IET Microwaves, Antennas and Propagation, 9(4), 319–327.

    Article  Google Scholar 

  27. Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Enhancement of tilted beam in elevation plane for planar end-fire antennas using artificial dielectricmedium. IEEE Transactions on Antennas Propagation, 63(10), 4540–4545.

    Article  MathSciNet  Google Scholar 

  28. Dadgarpour, A., Kishk, A. A., & Denidni, T. A. (2017). Dual band high-gain antenna with beam switching capability. IET Microwave Antennas Propagation, 11(15), 2155–2161.

    Article  Google Scholar 

  29. Dadgarpour, A., Zarghooni, B., Denidni, T. A., et al. (2016). Dual-band radiation tilting end-fire antenna for WLAN applications. IEEE Antennas Wireless Propagation Letters, 15, 1466–1469.

    Article  Google Scholar 

  30. Zheng, W. C., Zhang, L., & Li, Q. X. (2013). Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN. IEEE Transactions on Antennas and Propagation, 62(1), 237–246.

    Article  Google Scholar 

  31. Capobianco, A., Pigozzo, F. M., Assalini, A., et al. (2011). A compact MIMO array of planar end-fire antennas for WLAN applications. IEEE Transactions on Antennas and Propagation, 59(9), 3462–3465.

    Article  Google Scholar 

  32. Costa, F. C., Fontgalland, G., Assuncao, A. G. D., et al. (2006). A new quasi-Yagi bowtie type integrated antenna. In Proceedings on International Telecommunications Symposium (pp. 468–471).

  33. Gesbert, D., Shafi, M., Shiu, D., et al. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.

    Article  Google Scholar 

  34. Antoniades, M. A., Mirzaei, H., & Eleftheriades, G. V. (2016). Transmission-line based metamaterials in antenna engineering. In Handbook of antenna technologies (pp. 423–426). Springer.

  35. Ahdi Rezaeieh, S., Antoniades, M. A., & Abbosh, A. M. (2016). Bandwidth and directivity enhancement of loop antenna by non-periodic distribution of Mu-negative metamaterial unit cells. IEEE Transactions on Antennas and Propagation, 64(8), 3319–3329.

    Article  MathSciNet  Google Scholar 

  36. Shamonin, M., Shamonina, E., Kalinin, V., et al. (2004). Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring. Journal of Applied Physics, 95(7), 3778–3784.

    Article  Google Scholar 

  37. Sauviac, B., Simovski, C. R., & Tretyakov, S. A. (2004). Double split-ring resonators: Analytical modeling and numerical simulations. Electromagnetics, 24, 317–338.

    Article  Google Scholar 

  38. Aydin, K., Bulu, I., Guven, K., et al. (2005). Investigation of magnetic resonances for different split-ring resonator parameters and designs. New Journal of Physics, 7, 168.

    Article  Google Scholar 

  39. Feresidis, A. P., Goussetis, G., Wang, S., et al. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53(1), 209–215.

    Article  Google Scholar 

  40. Marqués, R., Mesa, F., Martel, J., & Medina, F. (2003). Comparativeanalysis of edge- and broadside-coupled split ring resonators formetamaterial design Theory and experiment. IEEE Transactions on Antennas and Propagation, 51(10), 2572–2581.

    Article  Google Scholar 

  41. Baena, J. D., Bonache, J., Martin, F., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, MTT–53, 1451–1461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dhanaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanaraj, P., Uma Maheswari, S. Performance analysis of electrically coupled SRR bowtie antenna for wireless broadband communications. Wireless Netw 26, 5271–5283 (2020). https://doi.org/10.1007/s11276-020-02396-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02396-y

Keywords

Navigation