Skip to main content

Advertisement

Log in

Taylor kernel fuzzy C-means clustering algorithm for trust and energy-aware cluster head selection in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks depend on the effective functioning of the nodes in the network, which is concerned regarding the energy that is essential for the extended network life-time. Clustering plays a major role in enabling energy efficiency, which extends the life-time of the network. Thus, the paper introduces a cluster head (CH) selection phenomenon based on the algorithm, Taylor kernel fuzzy C-means (Taylor KFCM), which is the modification of the kernel-based fuzzy c-means (KFCM) algorithm in the Taylor series. The developed algorithm chooses the cluster head using the selection phenomenon, acceptability factor, which is computed using the energy, distance, and trust. In other words, a node acts as a CH when the fitness constraints of minimal distance, maximal trust, and maximal energy are attained. The simulation environment is established using 50, 100, and 200 nodes with 5 and 10 CHs and the effectiveness of the proposed CH selection is revealed through the analysis depending on the metrics, throughput, energy, delay, and the number of alive nodes. The proposed Taylor kernel fuzzy C-means acquired a maximal throughput, energy, and alive nodes of 0.2857, 0.0947, and 31, and minimal delay and routing overhead of 0.1219, 0.0418 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stankovic, J. (2014). Research directions for the internet of things. IEEE Internet of Things Journal, 1(1), 3–9.

    Article  Google Scholar 

  2. Liu, Y., Mao, X., He, Y., Liu, K., Gong, W., & Wang, J. (2013). Citysee: Not only a wireless sensor network. IEEE Network, 27(5), 42–47.

    Article  Google Scholar 

  3. Conti, L., Bartolozzi, S., Racanelli, V., Sorbetti Guerri, F., & Iacobelli, S. (2018). Alarm guard systems for the prevention of damage produced by ungulates in a chestnut grove of Middle Italy. Agronomy Research, 16(3), 679–687.

    Google Scholar 

  4. Luan, T. H., Cai, L. X., Chen, J., Shen, X., & Bai, F. (2014). Engineering a distributed infrastructure for large-scale cost-effective content dissemination over urban vehicular networks. IEEE Transactions on Vehicular Technology, 63(3), 1419–1435.

    Article  Google Scholar 

  5. Du, R., Chen, C., Yang, B., Lu, N., Guan, X., & Shen, X. (2015). Effective urban traffic monitoring by vehicular sensor networks. IEEE Transactions on Vehicular Technology, 64(1), 273–286.

    Article  Google Scholar 

  6. Tian, X., Zhu, Y., Chi, K., Liu, J., & Zhang, D. (2015). Reliable and energy efficient data forwarding in industrial wireless sensor networks. IEEE Systems Journal, 11, 1424–1434.

    Article  Google Scholar 

  7. Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.

    Article  Google Scholar 

  8. Zhezhuang, X., Chen, L., Chen, C., & Guan, X. (2016). Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks. IEEE Internet of Things Journal, 3(4), 520–532.

    Article  Google Scholar 

  9. Yao, Y., Cao, Q., & Vasilakos, A. (2015). Edal: An energy-efficient, delayaware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  10. Liu, X.-Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  11. Jiang, C. F., Yuan, D. M., & Zhao, Y. H. (2009). Towards clustering algorithms in wireless sensor networks: A survey. In Proceedings of the 2009 IEEE wireless communications and networking conference (WCNC’09).

  12. Gao, X., Zhu, X., Li, J., Fan, W., Chen, G., Ding-Zhu, D., et al. (2017). A novel approximation for multi-hop connected clustering problem in wireless networks. IEEE/ACM Transactions on Networks, 25(4), 2223–2234.

    Article  Google Scholar 

  13. Soni, V., & Mallick, D. K. (2018). Fuzzy logic based multihop topology control routing protocolin wireless sensor networks. Microsystem Technologies, 24(5), 2357–2369.

    Article  Google Scholar 

  14. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  15. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  16. Zahedi, A., Arghavani, M., Parandin, F., & Arghavani, A. (2018). Energy efficient reservation-based cluster head selection in WSNs. Wireless Personal Communications, 100(3), 667–679.

    Article  Google Scholar 

  17. Maddali, B. K. (2015). Core network supported multicast routing protocol for wireless sensor networks. IET Wireless Sensor Systems, 5(4), 175–182.

    Article  Google Scholar 

  18. Mohammed, T., Kemal, E. T., Sasan, A., & Shervin, E. (2009). Survey of multi path routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(36), 1125–1143.

    Google Scholar 

  19. Jadhav, A. N., & Gomathi, N. (2019). DIGWO: Hybridization of dragonfly algorithm with improved grey wolf optimization algorithm for data clustering. Multimedia Research, 2(3), 1–11.

    Google Scholar 

  20. Wimalajeewa, T., & Varshney, P. K. (2015). Wireless compressive sensing over fading channels with distributed sparse random projections. IEEE Transactions on Signal and Information Processing over Networks, 1(1), 33–44.

    Article  MathSciNet  Google Scholar 

  21. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  22. Zhou, H., Liu, B., Luan, T. H., Hou, F., Gui, L., Li, Y., et al. (2014). Chaincluster: Engineering a cooperative content distribution framework for highway vehicular communications. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2644–2657.

    Article  Google Scholar 

  23. Demigha, O., Hidouci, W.-K., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys and Tutorials, 15, 1210–1222.

    Article  Google Scholar 

  24. Waykar, S. (2019). Dynamic routing protocol for ad-hoc network. ICWET2010, TECTMumbai.

  25. More, N. S., & Pawar, P. M. (2009). Simulation of S-MAC protocol for wireless sensor network. In National level conference at Kumbakonam.

  26. Chintalapalli, R. M., & Ananthula, V. R. (2018). M-LionWhale: Multi-objective optimisation model for secure routing in mobile ad-hoc network. IET Communications, 12(12), 1406–1415.

    Article  Google Scholar 

  27. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2010). A robust harmony search algorithm based clustering protocol for wireless sensor networks. In Proceedings of the IEEE international conference on communications workshops (pp. 1–5).

  28. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.

    Article  Google Scholar 

  29. Kulkarni, Y. R., & Murugan, S. T. (2019). Hybrid weed-particle swarm optimization algorithm and mixture for data publishing. Multimedia Research (MR), 2(3), 33–42.

    Google Scholar 

  30. Ke, W., Yangrui, O., Hong, J., Heli, Z., & Xi, L. (2016). Energy aware hierarchical cluster-based routing protocol for WSNs. The Journal of China Universities of Posts and Telecommunications, 23(4), 46–52.

    Article  Google Scholar 

  31. Benzerbadj, A., Kechar, B., Bounceur, A., & Pottier, B. (2018). Cross-layer Greedy position-based routing for multihop wireless sensor networks in a real environment. Ad Hoc Networks, 71, 135–146.

    Article  Google Scholar 

  32. Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. Frome: Luniver.

    Google Scholar 

  33. Lee, J.-S., & Kao, T.-Y. (2016). An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks. IEEE Internet of Things Journal, 3(6), 951–958.

    Article  Google Scholar 

  34. Mehra, P. S., Doja, M. N., & Alam, B. (2020). Fuzzy based enhanced cluster head selection (FBECS) for WSN. Journal of King Saud University—Science, 32(1), 390–401.

    Article  Google Scholar 

  35. Amuthan, A., & Arulmurugan, A. (2018). Semi-Markov inspired hybrid trust prediction scheme for prolonging lifetime through reliable cluster head selection in WSNs. Journal of King Saud University—Computer and Information Sciences (in press).

  36. Priyadarshini, R. R., & Sivakumar, N. (2018). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University—Computer and Information Sciences (in press).

  37. Mahajan, S., Malhotra, J., & Sharma, S. (2014). An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal, 15(3), 189–199.

    Article  Google Scholar 

  38. Robinson, Y. H., Julie, E. G., Balaji, S., & Ayyasamy, A. (2017). Energy aware clustering scheme in wireless sensor network using neuro-fuzzy approach. Wireless Personal Communications, 95(2), 703–721.

    Article  Google Scholar 

  39. Hasbullah, H., & Nazir, B. (2010). Region-based energy-aware cluster (REC) for efficient packet forwarding in WSN. In International symposium on information technology. Kuala Lumpur.

  40. Qiao, J., & Zhang, X. (2018). Compressive data gathering based on even clustering for wireless sensor networks. IEEE Access, 6, 24391–24410.

    Article  Google Scholar 

  41. Wang, B., Chen, X., & Chang, W. (2014). A light-weight trust-based QoS routing algorithm for ad hoc networks. Pervasive and Mobile Computing, 13, 164–180.

    Article  Google Scholar 

  42. Ding, Y., & Xian, F. (2016). Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing, 188, 233–238.

    Article  Google Scholar 

  43. Mangai, S. A., Sankar, B. R., & Alagarsamy, K. (2014). Taylor series prediction of time series data with error propagated by artificial neural network. International Journal of Computer Applications, 89(1), 41–47.

    Article  Google Scholar 

  44. Sirdeshpande, N., & Udupi, V. (2017). Fractional lion optimization for cluster head-based routing protocol in wireless sensor network. Journal of the Franklin Institute, 354(11), 4457–4480.

    Article  MathSciNet  MATH  Google Scholar 

  45. Kumar, R., & Kumar, D. (2016). Multi-objective fractional artificial bee colony algorithm to energy aware routing protocol in wireless sensor network. Wireless Networks, 22(5), 1461–1474.

    Article  Google Scholar 

  46. Dhumane, A. V., & Prasad, R. S. (2017). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25, 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Augustine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, S., Ananth, J.P. Taylor kernel fuzzy C-means clustering algorithm for trust and energy-aware cluster head selection in wireless sensor networks. Wireless Netw 26, 5113–5132 (2020). https://doi.org/10.1007/s11276-020-02352-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02352-w

Keywords

Navigation