Energy efficiency maximization in FDD massive MIMO systems with channel aging


In this paper, energy efficiency (EE) of the frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems in the downlink transmission is investigated by considering the channel aging effect. First, we present a model for channel aging in the FDD massive MIMO systems and study its effect on the EE of the system. We assume that the channel aging exists in the entire transmission frame of the FDD systems which includes both pilot and data transmission phases. Then, we propose methods for compensating for this effect and increasing the EE. These methods include channel prediction method in the pilot transmission phase, system’s parameters optimization for maximizing the EE and a hybrid method. By numerical simulations, we compare the performance of the proposed methods and their abilities to combat the channel aging effect in the massive MIMO systems and EE improvement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Chopra, R., Murthy, C. R., Suraweera, H. A., & Larsson, E. G. (2018). Performance analysis of FDD massive MIMO systems under channel aging. IEEE Transactions on Wireless Communications, 17(2), 1094–1108.

    Article  Google Scholar 

  2. 2.

    Kong, C., Zhong, C., Papazafeiropoulos, A. K., Matthaiou, M., & Zhang, Z. (2015). Sum-rate and power scaling of massive MIMO systems with channel aging. IEEE Transactions on Communications, 63(12), 4879–4893.

    Article  Google Scholar 

  3. 3.

    Chopra, R., Murthy, C. R., & Suraweera, H. A. (2016). On the throughput of large MIMO beamforming systems with channel aging. IEEE Signal Processing Letters, 23(11), 1523–1527.

    Article  Google Scholar 

  4. 4.

    Adhikary, A., Nam, J., Ahn, J. Y., & Caire, G. (2013). Joint spatial division and multiplexing the large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Truong, K. T., & Heath, R. W. (2013). Effects of channel aging in massive MIMO systems. Journal of Communications and Networks, 15(4), 338–351.

    Article  Google Scholar 

  6. 6.

    Papazafeiropoulos, A. K., Ngo, H. Q., & Ratnarajah, T. (2017). Performance of massive MIMO uplink with zero-forcing receivers under delayed channels. IEEE Transactions on Vehicular Technology, 66(4), 3158–3169.

    Article  Google Scholar 

  7. 7.

    Papazafeiropoulos, A. K. (2017). Impact of general channel aging conditions on the downlink performance of massive MIMO. IEEE Transactions on Vehicular Technology, 66(2), 1428–1442.

    Article  Google Scholar 

  8. 8.

    Chen, J., & Lau, V. K. N. (2014). Two-tier precoding for FDD multi-cell massive MIMO time-varying interference networks. IEEE Journal on Selected Areas in Communications, 32(6), 1230–1238.

    Article  Google Scholar 

  9. 9.

    Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802–814.

    Article  Google Scholar 

  10. 10.

    Ma, J., Zhang, S., Li, H., Gao, F., & Jin, S. (2019). Sparse Bayesian learning for the time-varying massive MIMO channels: Acquisition and tracking. IEEE Transactions on Communications, 67(3), 1925–1938.

    Article  Google Scholar 

  11. 11.

    Xie, H., Gao, F., Zhang, S., & Jin, S. (2017). A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Transactions on Vehicular Technology, 66(4), 3170–3184.

    Article  Google Scholar 

  12. 12.

    Chopra, R., Murthy, C. R., Suraweera, H. A., & Larsson, E. G. (2019). Analysis of nonorthogonal training in massive MIMO under channel aging with SIC receivers. IEEE Signal Processing Letters, 26(2), 282–286.

    Article  Google Scholar 

  13. 13.

    Deng, R., Jiang, Z., Zhou, S., & Niu, Z. (2019). Intermittent CSI update for massive MIMO systems with heterogeneous user mobility. IEEE Transactions on Communications, 67(7), 4811–4824.

    Article  Google Scholar 

  14. 14.

    Lu, A., Gao, X., Zhong, W., Xiao, C., & Meng, X. (2019). Robust transmission for massive MIMO downlink with imperfect CSI. IEEE Transactions on Communications, 67(8), 5362–5376.

    Article  Google Scholar 

  15. 15.

    Li, J., Wang, D., Zhu, P., & You, X. (2017). Uplink spectral efficiency analysis of distributed massive MIMO with channel impairments. IEEE Access, 5, 5020–5030.

    Google Scholar 

  16. 16.

    Zhao, N., Yu, F. R., & Sun, H. (2015). Adaptive energy-efficient power allocation in green interference-alignment-based wireless networks. IEEE Transactions on Vehicular Technology, 64(9), 4268–4281.

    Article  Google Scholar 

  17. 17.

    Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.

    Article  Google Scholar 

  18. 18.

    Mahapatra, R., Nijsure, Y., Kaddoum, G., Ul Hassan, N., & Yuen, C. (2016). Energy efficiency tradeoff mechanism towards wireless green communication a survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705.

    Article  Google Scholar 

  19. 19.

    Wang, Y., Li, C., Huang, Y., Wang, D., Ban, T., & Yang, L. (2016). Energy-efficient optimization for downlink massive MIMO FDD systems with transmit-side channel correlation. IEEE Transactions on Vehicular Technology, 65(9), 7228–7243.

    Article  Google Scholar 

  20. 20.

    Jakes, W. C. (1974). Microwave mobile communication. New York: Wiley.

    Google Scholar 

  21. 21.

    Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  22. 22.

    Kim, Y., Miao, G., & Hwang, T. (2014). Energy efficient pilot and link adaptation for mobile users in TDD multi-user MIMO systems. IEEE Transactions on Wireless Communications, 13(1), 382–393.

    Article  Google Scholar 

  23. 23.

    Prabhu, R. S., & Daneshrad, B. (2010) Energy-efcient power loading for a MIMO-SVD system and its performance in flat fading. In 2010 IEEE global telecommunications conference GLOBECOM 2010 (pp. 1–5). Miami, FL .

  24. 24.

    Hoydis, J., Brink, S. T., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  25. 25.

    Crouzeix, J., & Ferland, J. (1991). Algorithms for generalized fractional programming. Math Program, 52, 191–207.

    MathSciNet  Article  Google Scholar 

  26. 26.

    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Google Scholar 

  27. 27.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing. New York: Cambridge University Press.

    Google Scholar 

  28. 28.

    Yu, W., & Lui, R. (2006). Dual methods for non-convex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Mohammad Razavizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix A

Proof of the Theorem 1

In [9], an optimal pilot matrix has been obtained for a spatially correlated mode. We calculate the optimal pilot matrix, considering that the channel is changing from one symbol to another. Optimal pilot vectors that minimize MSE are obtained as

$$\begin{aligned}&\text {arg min }\mathbf {MSE}\nonumber \\&{\text{subject to }}{\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{i}=1;~~i=1,\ldots ,\tau \nonumber \\&\qquad\qquad\quad {\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{k}=0;~~k\ne l\nonumber \\ =&~ \text {arg min }\text {tr}\left( \mathbf {R}-\varvec{\Psi } \right) \nonumber \\&{\text{subject to }}{\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{i}=1;~~i=1,\ldots ,\tau \nonumber \\&\qquad\qquad\;\quad {\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{k}=0;~~k\ne l\nonumber \\ =&~ \text {arg max } \text {tr}\left( \varvec{\Psi } \right) \nonumber \\&{\text{subject to }}{\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{i}=1;~~i=1,\ldots ,\tau \nonumber \\&\qquad\qquad\;\quad {\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{k}=0;~~k\ne l \end{aligned}$$

By substituting (8) in the above equation and choosing the vectors \(\varvec{\varphi }_n\) appropriately, the value of the \(\varvec{\varphi } _n^H \alpha ^k \mathbf {R} {{ \varvec{\varphi } }_{n-k}} =0;~k\ne 0\), can be reduced to zero. Therefore, we have

$$\begin{aligned}&\text {arg min }\mathbf {MSE}\nonumber \\&\quad = \text {arg max } \sum \limits _{l = 1}^\tau {\alpha ^{2 l }}{\varepsilon _p} \varvec{ \varphi }_l^H{\mathbf {R}^2}{\varvec{ \varphi }_l} {\left( {{\varepsilon _p} \varvec{\varphi } _l^H \mathbf {R} {{ \varvec{\varphi } }_l} + {\sigma }_{P}^2} \right) ^{- 1}} \end{aligned}$$

By substituting (2) in (55)

and considering \(\tilde{\varvec{\varphi } }_l = {\mathbf {U}^H}\varvec{\varphi }_l\), we have

$$\begin{aligned}&\mathop {\text {arg max }\sum \limits _{l = 1}^\tau {\alpha ^{2l}}{\varepsilon _p} \tilde{\varvec{\varphi }}_l^H \varvec{\Lambda ^2}\tilde{\varvec{\varphi } }_l \left( {\tilde{\varvec{\varphi } }_l}^H \left( {\varepsilon _p} \varvec{\Lambda } +{\sigma }_{P}^2 \mathbf {I}_{M} \right) \tilde{\varvec{\varphi } }_l \right) ^{- 1}}\nonumber \\&{\text{subject to }}{\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{i}=1;~~i=1,\ldots ,\tau \nonumber \\&\qquad\qquad\quad {\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{k}=0;~~k\ne l \end{aligned}$$

The above equation is the sum of the positive fractions, and it is maximized when the amount of each fraction is maximized. By derivation from (56) respect to \(\tilde{\varvec{\varphi }}_l\) and simplifying, \(\tilde{\varvec{\varphi }}_l\) is obtained as

$$\begin{aligned} {\tilde{\varvec{\varphi } }_l} = {\left( {{\mathbf {I}_{{M}}}} \right) _{l}}. \end{aligned}$$

Therefore, optimal pilot vectors are

$$\begin{aligned} { \varvec{\varphi }_l} = \mathbf {u} _{l};l=1,\ldots,\tau . \end{aligned}$$

Since the pilots are the eigen vectors of the channel covariance matrix and they are orthogonal to each other, hence, the initial considered assumption is correct.

Appendix B

Proof of the Theorem 2

Optimal pilot vectors that minimize MSE are obtained as

$$\begin{aligned}&\text {arg min }\mathbf {MSE}\nonumber \\&{\text{subject to }}{\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{i}=1;~~i=1,\ldots ,\tau \nonumber \\&\qquad\qquad\quad {\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{k}=0;~~k\ne l \end{aligned}$$

The above optimization problem is equivalent with

$$\begin{aligned}&\text {arg max } \text {tr}\left( \varvec{\Theta } \right) \nonumber \\&{\text{subject to }}{\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{i}=1;~~i=1,\ldots ,\tau \nonumber \\&\qquad\qquad\quad {\varvec{\varphi }}^{H}_{i} {\varvec{\varphi }}_{k}=0;~~k\ne l \end{aligned}$$

where \(\text {tr} (\varvec{\Theta })\) is calculated as

$$\begin{aligned} \text {tr} ~\varvec{\Theta } ={\alpha }^2 {\varepsilon _p} \text {tr} \left( {\varvec{\Upsilon }^H} \left( \varvec{\delta } \left( {n,\alpha } \right) \otimes \mathbf {R} \right) ^H \left( \varvec{\delta } \left( {n,\alpha } \right) \otimes \mathbf{R} \right) {\varvec{\Upsilon }}\mathbf {Y}^{-1}\left( n,\alpha \right) \right) \end{aligned}$$

By choosing the vectors \(\varvec{\varphi }_n\) appropriately, the value of the \(\varvec{\varphi } _n^H \alpha ^k \mathbf {R} {{ \varvec{\varphi } }_{n-k}} =0;~k\ne 0\), can be reduced to zero. Therefore, we have

$$\begin{aligned}&\text {arg max }{\alpha ^2} \sum \limits _{i = 1}^\tau {\alpha ^{2\left( {\tau - i} \right) }}{\varepsilon _p} \varvec{ \varphi }_i^H{\mathbf {R}^2}{\varvec{ \varphi } _i} {\left( {{\varepsilon _p} \varvec{\varphi } _i^H \mathbf {R} {{ \varvec{\varphi } }_i} + {\sigma }_{P}^2} \right) ^{- 1}}, \end{aligned}$$

By substituting (2) in the above equation and considering \(\tilde{\varvec{\varphi }}_i = {\mathbf {U}^H}\varvec{\varphi } _i\), the above equation is as

$$\begin{aligned}&\text {arg max }{\alpha ^2} \sum \limits _{i = 1}^\tau {\alpha ^{2\left( {\tau - i} \right) }}{\varepsilon _p} \tilde{\varvec{\varphi }}_i^H \varvec{\Lambda ^2}\tilde{\varvec{\varphi }}_i \left( {\tilde{\varvec{\varphi }}_i}^H \left( {\varepsilon _p} \varvec{\Lambda } +{\sigma }_{P}^2\mathbf {I}_{M}\right) \tilde{\varvec{\varphi }}_i \right) ^{- 1}, \end{aligned}$$

By derivation of the above equation and equating it to zero, the optimal pilot vectors are obtained as

$$\begin{aligned} {\varvec{\varphi } _n} = \mathbf {u} _{\tau - n + 1}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadabadian, M., Khavari Moghaddam, S. & Razavizadeh, S.M. Energy efficiency maximization in FDD massive MIMO systems with channel aging. Wireless Netw 26, 4031–4044 (2020).

Download citation


  • Massive MIMO
  • Channel aging
  • FDD
  • Time-varying channels
  • Channel estimation
  • Channel prediction
  • Energy efficiency
  • Outdated channels
  • Channel impairment
  • Pilot design