Skip to main content
Log in

Intelligent system for selection of order picking technologies

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The material handling industry in order to increase the productivity and quality of the order picking process has developed various technical or technological equipment. Therefore, to establish the right technology for every specific business context is a decision that need to be evaluated in a right way. The purpose of this paper is to create an intelligent decision model to select the most appropriate order picking technology. The present study shows an artificial neural network (ANN) trained with the results of an analytic hierarchy process (AHP). The weighting of the determining criteria and the prioritization of the different technologies from several experts are obtained through the AHP, while the artificial neural network is used to automate the decision process. The designed ANN can synthesize expert judgments and then predict the prioritization of order picking technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aznar Bellver, J., & Guijarro Martínez, F. (2008). Nuevos métodos de valoración. Modelos multicriterio. Valencia: Universidad Politécnica de Valencia.

    Google Scholar 

  2. Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). A comparative analysis of different paperless picking systems. Industrial Management and Data Systems, 115(3), 483–503. https://doi.org/10.1108/IMDS-10-2014-0314.

    Article  Google Scholar 

  3. Beltrán, Ó. (2005). Revisiones sistemáticas de la literatura. Revista Colombiana de Gastroenterología, 20(1), 60–69.

    Google Scholar 

  4. Berumen, S. A., & Redondo, F. L. (2007). La utilidad de los métodos de decisión multicriterio (como el ahp) en un entorno de competitividad creciente. Cuadernos de administración, 20(34), 65–87.

    Google Scholar 

  5. Budgen, D., & Brereton, P. (2006). Performing systematic literature reviews in software engineering. In Proceedings of the 28th international conference on Software engineering, pp. 1051–1052. ACM.

  6. Buscema, P. M., Massini, G., Breda, M., Lodwick, W. A., Newman, F., & Asadi-Zeydabadi, M. (2018). Artificial neural networks. In Artificial adaptive systems using auto contractive maps, pp. 11–35. Berlin: Springer.

  7. Çakır, E. (2009). Logistics outsourcing and selection of third party logistic service provider (3PL) via fuzzy AHP. Master Thesis, Bahçeşehir University.

  8. Chakraborty, S., & Prasad, K. (2016). A QFD-based expert system for industrial truck selection in manufacturing organizations. Journal of Manufacturing Technology Management, 27(6), 800–817.

    Article  Google Scholar 

  9. Chung, W. W., Wong, K. C., & Soon, P. T. (2007). An ANN-based dss system for quality assurance in production network. Journal of Manufacturing Technology Management, 18(7), 836–857.

    Article  Google Scholar 

  10. Davarzani, H., & Norrman, A. (2015). Toward a relevant agenda for warehousing research: Literature review and practitioners’ input. Logistics Research, 8(1), 1.

    Article  Google Scholar 

  11. de Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481–501. https://doi.org/10.1016/j.ejor.2006.07.009.

    Article  MATH  Google Scholar 

  12. de Vries, J., de Koster, R., & Stam, D. (2016). Exploring the role of picker personality in predicting picking performance with pick by voice, pick to light and RF-terminal picking. International Journal of Production Research, 54(8), 2260–2274. https://doi.org/10.1080/00207543.2015.1064184.

    Article  Google Scholar 

  13. Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. Buchanan & A. Bryman (Eds.), The Sage handbook of organizational research methods, chap. 39 (pp. 671–689). Thousand Oaks: Sage Publications Ltd.

    Google Scholar 

  14. Gisbert, J. P., & Bonfill, X. (2004). Cómo realizar, evaluar y utilizar revisiones sistemáticas y metaanálisis? Gastroenterología y hepatología, 27(3), 129–149.

    Article  Google Scholar 

  15. González-Fernández, I., Iglesias-Otero, M., Esteki, M., Moldes, O., Mejuto, J., & Simal-Gandara, J. (2018). A critical review on the use of artificial neural networks in olive oil production, characterization and authentication. Critical Reviews in Food Science and Nutrition, 59, 1–14.

    Google Scholar 

  16. Greco, S., Figueira, J., & Ehrgott, M. (2016). Multiple criteria decision analysis. Berlin: Springer.

    Book  Google Scholar 

  17. Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: A content analysis of the literature. International Journal of Production Research, 55(5), 1260–1276.

    Article  Google Scholar 

  18. Guo, A., Raghu, S., Xie, X., Ismail, S., Luo, X., Simoneau, J., Gilliland, S., Baumann, H., Southern, C., & Starner, T. (2014). A comparison of order picking assisted by head-up display (hud), cart-mounted display (cmd), light, and paper pick list. In Proceedings of the 2014 ACM international Symposium on wearable computers, pp. 71–78. ACM.

  19. Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409(19), 3578–3594.

    Article  Google Scholar 

  20. Kobbacy, K. A., & Vadera, S. (2011). A survey of ai in operations management from 2005 to 2009. Journal of Manufacturing Technology Management, 22(6), 706–733.

    Article  Google Scholar 

  21. Kuo, R. J., Chi, S. C., & Kao, S. S. (2002). A decision support system for selecting convenience store location through integration of fuzzy ahp and artificial neural network. Computers in Industry, 47(2), 199–214.

    Article  Google Scholar 

  22. Leung, C. S. K., & Lau, H. Y. K. (2019). A multi-objective simulation-based optimization approach applied to material handling system (pp. 1–12). Cham: Springer. https://doi.org/10.1007/978-3-030-03898-4_1.

    Book  Google Scholar 

  23. Litvinchev, I., Rios, Y. A., Özdemir, D., & Hernández-Landa, L. G. (2014). Multiperiod and stochastic formulations for a closed loop supply chain with incentives. Journal of Computer and System Sciences International, 53(2), 201–211.

    Article  MathSciNet  Google Scholar 

  24. Matich, D. J. (2001). Redes neuronales: Conceptos básicos y aplicaciones. Chapman: Universidad Tecnológica Nacional.

    Google Scholar 

  25. Osman, I. H. (2013). Handbook of research on strategic performance management and measurement using data envelopment analysis. Hershey: IGI Global.

    Google Scholar 

  26. Poon, T., Choy, K., Chow, H. K., Lau, H. C., Chan, F. T., & Ho, K. (2009). A RFID case-based logistics resource management system for managing order-picking operations in warehouses. Expert Systems with Applications, 36(4), 8277–8301. https://doi.org/10.1016/j.eswa.2008.10.011.

    Article  Google Scholar 

  27. Razi, M. A., & Athappilly, K. (2005). A comparative predictive analysis of neural networks (nns), nonlinear regression and classification and regression tree (cart) models. Expert Systems with Applications, 29(1), 65–74.

    Article  Google Scholar 

  28. Reif, R., & Günthner, W. A. (2009). Pick-by-vision: Augmented reality supported order picking. The Visual Computer, 25(5), 461–467. https://doi.org/10.1007/s00371-009-0348-y.

    Article  Google Scholar 

  29. Rodríguez-Aguilar, R., & Marmolejo-Saucedo, J. A. (2018). Evaluation of technical efficiency of thermal power units in Mexico: Data envelopment analysis and stochastic frontiers (pp. 101–122). Cham: Springer. https://doi.org/10.1007/978-3-319-70542-2_8.

    Book  Google Scholar 

  30. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.

    Article  Google Scholar 

  31. Toskano Hurtado, G. B. (2005). El proceso de análisis jerárquico (ahp) como herramienta para la toma de decisiones en la selección de proveedores. Monografía (Título profesional de: Licenciaoo en Investigación Op$^{\sim }$r$^{\sim }$tiva)$^{\sim }$ L.

  32. Triantaphyllou, E. (2000). Multi-criteria decision making methods. In: Multi-criteria decision making methods: A comparative study, pp. 5–21. Berlin: Springer.

  33. Vieira, J. G. V., Toso, M. R., da Silva, J. E. A. R., & Ribeiro, P. C. C. (2017). An AHP-based framework for logistics operations in distribution centres. International Journal of Production Economics, 187, 246–259.

    Article  Google Scholar 

  34. Yajure, C. A. (2015). Comparación de los métodos multicriterio ahp y ahp difuso en la selección de la mejor tecnología para la producción de energía eléctrica a partir del carbón mineral. Scientia et technica, 20(3), 255–260.

    Article  Google Scholar 

  35. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas E. Salais-Fierro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarreal-Zapata, G., Salais-Fierro, T.E. & Saucedo-Martínez, J.A. Intelligent system for selection of order picking technologies. Wireless Netw 26, 5809–5816 (2020). https://doi.org/10.1007/s11276-020-02262-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02262-x

Keywords

Navigation