Skip to main content
Log in

Recent advances in consensus protocols for blockchain: a survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As the core of a blockchain system, the consensus mechanism not only helps to maintain the consistency of node data, but also gets involved in the issuance of tokens and prevention of attacks. Since the first blockchain system was born, it has been continuously improved with the development of blockchain technology and evolved into multiple new branches. Starting with the basic introduction of consensus and the classic Byzantine Generals Problem in distributed computing area, this survey utilizes a thorough classification to explain current consensus protocols in the blockchain system, presents the characteristics of mainstream protocols (PoW, PoS, DPoS, PBFT, etc.) and analyzes the strengths and weaknesses of them. Then we evaluate the performance qualitatively and quantitatively. In the end, we highlight several research directions for developing more practical consensus protocols for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Global computing power distribution [Online], available: https://btc.com/stats/pool, October 14, 2019.

  2. Energy consumption statistics [Online], available: https://digiconomist.net/bitcoin-energy-consumption, October 14, 2019.

  3. Primecoin Website [Online], available: http:// primecoin.io/, October 14, 2019.

References

  1. Zhang, R., Xie, P., Wang, C., Liu, G., & Wan, S. (2019). Classifying transportation mode and speed from trajectory data via deep multi-scale learning. Computer Networks, 162, 106861.

    Article  Google Scholar 

  2. Adhikari, A., Rawat, D.B., & Song, M. (2019). Wireless network virtualization by leveraging blockchain technology and machine learning. In: Proceedings of ACM workshop on wireless security and machine learning (pp. 61–66).

  3. Back, A. (2002). Hashcash - a denial of service counter-measure. In: Proceedings of USENIX annual technical conference.

  4. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., & Zikas, V. (2018). Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In: Proceedings of ACM SIGSAC conference on computer and communications security (pp. 913–930).

  5. Benet, J. (2014). IPFS - content addressed, versioned, p2p file system. Eprint Arxiv.

  6. Bentov, I., Lee, C., Mizrahi, A., & Rosenfeld, M. (2014). Proof of activity: Extending bitcoin’s proof of work via proof of stake. ACM SIGMETRICS Performance Evaluation Review, 42(3), 34–37.

    Article  Google Scholar 

  7. BitFury, G. (2015). Proof of stake versus proof of work white paper. Retrieved September 27, 2019 from http://bitfury.com/content/5-white-papers-research/posvs-pow-1.0.2.pdf.

  8. Buterin, V., & Griffith, V. (2017). Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437.

  9. Cachin, C. (2016). Architecture of the hyperledger blockchain fabric. In: Proceedings of workshop on distributed cryptocurrencies and consensus ledgers (Vol. 310, p. 4).

  10. Cachin, C., & Vukolić, M. (2017). Blockchain consensus protocols in the wild. arXiv preprint arXiv:1707.01873.

  11. Chen, K., Wang, C., Yin, Z., Jiang, H., & Tan, G. (2018). Slide: Towards fast and accurate mobile fingerprinting for wifi indoor positioning systems. IEEE Sensors Journal, 18(3), 1213–1223.

    Article  Google Scholar 

  12. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., & Shi, W. (2017). On security analysis of proof-of-elapsed-time (poet). In: Proceedings of international symposium on stabilization, safety, and security of distributed systems (pp. 282–297).

  13. CHRONOLOGIC: Chrono logic whitepaper (2017). Retrieved September 27, 2019 from https://chronologic.network/uploads/ChronologicWhitepaper.pdf.

  14. Crosby, M., & Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6–10), 71.

    Google Scholar 

  15. Crypti: Crypti whitepaper (2015). https://bravenewcoin.com/insights/crypti-white-paper .

  16. Dai, Y., Xu, D., Maharjan, S., Chen, Z., He, Q., & Zhang, Y. (2019). Blockchain and deep reinforcement learning empowered intelligent 5g beyond. IEEE Network, 33(3), 10–17.

    Article  Google Scholar 

  17. Daian, P., Pass, R., & Shi, E. (2016) Snow white: Provably secure proofs of stake. Cryptology ePrint Archive, Report 2016/919. https://eprint.iacr.org/2016/919.

  18. David, B., Gaži, P., Kiayias, A., & Russell, A. (2018). Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Proceedings of annual international conference on the theory and applications of cryptographic techniques (pp. 66–98).

  19. De Angelis, S., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., & Sassone, V. (2018). Pbft vs proof-of-authority: Applying the cap theorem to permissioned blockchain.

  20. De Vries, A. (2018). Bitcoin’s growing energy problem. Joule, 2(5), 801–805.

    Article  Google Scholar 

  21. Dwork, C., & Naor, M. (1993). Pricing via processing or combatting junk mail. In: Proceedings of international cryptology conference on advances in cryptology (pp. 139–147).

  22. Fan, J., Yi, L. T., & Shu, J. W. (2013). Research on the technologies of Byzantine system. Journal of Software, 24(6), 1346–1360.

    Article  Google Scholar 

  23. Gao, H., Huang, W., Yang, X., Duan, Y., & Yin, Y. (2018). Toward service selection for workflow reconfiguration: An interface-based computing solution. Future Generation Computer Systems, 87, 298–311.

    Article  Google Scholar 

  24. Gao, H., Mao, S., Huang, W., & Yang, X. (2018). Applying probabilistic model checking to financial production risk evaluation and control: A case study of alibaba’s yu’e bao. IEEE Transactions on Computational Social Systems, 5(3), 785–795.

    Article  Google Scholar 

  25. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017). Algorand: Scaling Byzantine agreements for cryptocurrencies. In: Proceedings of 26th symposium on operating systems principles (pp. 51–68).

  26. Houy, N. (2014). It will cost you nothing to ’kill’ a proof-of-stake crypto-currency (Vol. 34, no. 2). New York: Social Science Electronic Publishing.

  27. Huang, H., Yin, H., Min, G., Zhang, J., Wu, Y., & Zhang, X. (2018). Energy-aware dual-path geographic routing to bypass routing holes in wireless sensor networks. IEEE Transactions on Mobile Computing, 17(6), 1339–1352.

    Article  Google Scholar 

  28. Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A provably secure proof-of-stake blockchain protocol. In: Proceedings of annual international cryptology conference (pp. 357–388).

  29. King, S., & Nadal, S. (2012). PPCoin: Peer-to-peer crypto-currency with proof-of-stake. Technical Report. https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf

  30. Lamport, L. (1977). Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering, 2, 125–143.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lamport, L. (1982). The Byzantine generals problem. ACM Transactions on Programming Languages & Systems, 4(3), 382–401.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lampson, B.W. (1996). How to build a highly available system using consensus. In: Proceedings of international workshop on distributed algorithms (pp. 1–17).

  33. Larimer, D., & Kasper L, S.F. (2015) Bitshares 2.0: Financial smart contract platform.

  34. Laszka, A., Johnson, B., & Grossklags, J. (2015). When bitcoin mining pools run dry. In: Proceedings of international conference on financial cryptography and data security (pp. 63–77).

  35. Liu, Y., Hao, L., Liu, Z., Sharif, K., Wang, Y., & Das, S. K. (2019). Mitigating interference via power control for two-tier femtocell networks: A hierarchical game approach. IEEE Transactions on Vehicular Technology, 68(7), 7194–7198.

    Article  Google Scholar 

  36. Liu, Y., Quan, W., Wang, T., & Wang, Y. (2018). Delay-constrained utility maximization for video ads push in mobile opportunistic d2d networks. IEEE Internet of Things Journal, 5(5), 4088–4099.

    Article  Google Scholar 

  37. Miller, A., Juels, A., Shi, E., Parno, B., & Katz, J. (2014). Permacoin: Repurposing bitcoin work for data preservation. In: Proceedings of IEEE symposium on security and privacy.

  38. Miller, A., Xia, Y., Croman, K., Shi, E., & Song, D. (2016). The honey badger of bft protocols. Cryptology ePrint Archive, Report 2016/199. https://eprint.iacr.org/2016/199.

  39. Milutinovic, M., He, W., Wu, H., & Kanwal, M. (2016). Proof of luck: An efficient blockchain consensus protocol. In: Proceedings of 1st Workshop on system software for trusted execution (p. 2).

  40. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved September 27, 2019 from https://bitcoin.org/bitcoin.pdf.

  41. Nguyen, G. T., & Kim, K. (2018). A survey about consensus algorithms used in blockchain. Journal of Information Processing Systems, 14(1), 101–128.

    Google Scholar 

  42. Pass, R., & Shi, E. (2016). The sleepy model of consensus. Cryptology ePrint Archive, Report 2016/918. https://eprint.iacr.org/2016/918.

  43. Pass, R., & Shi, E. (2018). Thunderella: Blockchains with optimistic instant confirmation. In: Proceedings of annual international conference on the theory and applications of cryptographic techniques (pp. 3–33).

  44. Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys, 22(4), 299–319.

    Article  Google Scholar 

  45. Schwartz, D., Youngs, N., Britto, A., et al. (2014). The ripple protocol consensus algorithm. Ripple Labs Inc White Paper (Vol. 5, p. 8).

  46. Selimi, M., Kabbinale, A.R., Ali, A., Navarro, L., & Sathiaseelan, A. (2018). Towards blockchain-enabled wireless mesh networks. In: Proceedings of 1st workshop on cryptocurrencies and blockchains for distributed systems (pp. 13–18).

  47. Sun, Y., Zhang, L., Feng, G., Yang, B., Cao, B., & Imran, M. A. (2019). Blockchain-enabled wireless Internet of Things: Performance analysis and optimal communication node deployment. IEEE Internet of Things Journal, 6(3), 5791–5802.

    Article  Google Scholar 

  48. Tanenbaum, A. S., & Steen, M. V. (2002). Distributed systems: Principles and paradigms. Beijing: Tsinghua University Press.

    MATH  Google Scholar 

  49. ThePiachu: Thoughts on delegated proof of stake and bitshares (2014). Retrieved September 27, 2019 from http://www.8btc.com/thoughts-ondelegated-proof-of-stake-and-bitshares.

  50. Tromp, J. (2015). Cuckoo cycle: A memory bound graph-theoretic proof-of-work. In: Proceedings of international conference on financial cryptography and data security (pp. 49–62).

  51. Wan, S., Gu, Z., & Ni, Q. (2019). Cognitive computing and wireless communications on the edge for healthcare service robots. Computer Communications. https://doi.org/10.1016/j.comcom.2019.10.012.

  52. Wan, S., Li, X., Xue, Y., Lin, W., & Xu, X. (2019). Efficient computation offloading for internet of vehicles in edge computing-assisted 5g networks. The Journal of Supercomputing. https://doi.org/10.1007/s11227-019-03011-4.

  53. Wang, C., & Jiang, H. (2015). Surf: A connectivity-based space filling curve construction algorithm in high genus 3d surface wsns. In: Proceedings of 34th IEEE INFOCOM (pp. 981–989). HongKong

  54. Wang, C., Lin, H., & Jiang, H. (2014). Trajectory-based multi-dimensional outlier detection in wireless sensor networks using hidden markov models. Wireless Networks, 20(8), 2409–2418.

    Article  Google Scholar 

  55. Wang, C., Lin, H., & Jiang, H. (2016). CANS: Towards congestion-adaptive and small stretch emergency navigation with wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1077–1089.

    Article  Google Scholar 

  56. Wang, C., Lin, H., Zhang, R., & Jiang, H. (2017). Send: A situation-aware emergency navigation algorithm with sensor networks. IEEE Transactions on Mobile Computing, 16(4), 1149–1162.

    Article  Google Scholar 

  57. Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., et al. (2019). A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access, 7, 22328–22370.

    Article  Google Scholar 

  58. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper (Vol. 151).

  59. Wustrow, E., & Vandersloot, B. (2016). DDoSCoin: cryptocurrency with a malicious proof-of-work. In: Proceedings of USENIX conference on offensive technologies (pp. 168–177).

  60. Xu, Y., Ren, J., Wang, G., Zhang, C., Yang, J., & Zhang, Y. (2019). A blockchain-based non-repudiation network computing service scheme for industrial iot. IEEE Transactions on Industrial Informatics, 15(6), 3632–3641.

    Article  Google Scholar 

  61. Xue, T., Yuan, Y., Ahmed, Z., Moniz, K., Cao, G., & Wang, C. (2018). Proof of contribution: A modification of proof of work to increase mining efficiency. In: Proceedings of IEEE 42nd annual computer software and applications conference (COMPSAC) (Vol. 1, pp. 636–644).

  62. Yin, Y., Chen, L., Xu, Y., Wan, J., Zhang, H., & Mai, Z. (2019). Qos prediction for service recommendation with deep feature learning in edge computing environment. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01241-7 (to appear).

  63. Yin, Y., Yu, F., Xu, Y., Yu, L., & Mu, J. (2017). Network location-aware service recommendation with random walk in cyber-physical systems. Sensors, 17(9), 2059.

    Article  Google Scholar 

  64. Yuen, H.Y., Wu, F., Cai, W., Chan, H.C., Yan, Q., & Leung, V. (2019). Proof-of-play: A novel consensus model for blockchain-based peer-to-peer gaming system. In: Proceedings of ACM international symposium on blockchain and secure critical infrastructure (pp. 19–28).

  65. Zaman, M.U., Shen, T., & Min, M. (2019). Proof of sincerity: A new lightweight consensus approach for mobile blockchains. In: Proceedings of 16th IEEE annual consumer communications & networking conference (CCNC) (pp. 1–4).

  66. Zhao, P., Li, J., Zeng, F., Xiao, F., Wang, C., & Jiang, H. (2018). ILLIA: Enabling k-anonymity-based privacy preserving against location injection attacks in continuous lbs queries. IEEE Internet of Things Journal, 5(2), 1033–1042.

    Article  Google Scholar 

  67. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An overview of blockchain technology: Architecture, consensus, and future trends. In: Proceedings of IEEE international congress on big data (BigData Congress) (pp. 557–564).

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61872416, 51879210, 51479159, 61671216, 61871436, 61872415 and 61702204; by the Fundamental Research Funds for the Central Universities of China under Grant 2019kfyXJJS017; and by the fund of Hubei Key Laboratory of Transportation Internet of Things under Grant 2018IOT004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Li, M., Liu, G. et al. Recent advances in consensus protocols for blockchain: a survey. Wireless Netw 26, 5579–5593 (2020). https://doi.org/10.1007/s11276-019-02195-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02195-0

Keywords

Navigation