Design and experimental evaluation of OnDemand inter-domain mobility in SDN supported PMIPv6

Abstract

The soaring number of mobile devices and their demands for enhanced services have forced operators to adopt locally software defined and globally distributed multi-domain systems. Network managed IP mobility across these domains is significant, and needs to be handled at service level granularity with OnDemand approach for resource efficiency and minimal transmission delay. Proxy Mobile IPv6 (PMIPv6) is a well-established network initiated local mobility solution. This paper evolves PMIPv6 to present a distributed architecture for OnDemand mobility across multiple domains with Software Defined Networking (SDN). In our proposed solution, controllers in SDN enabled PMIPv6 domains perform distributed communication with each other to provide inter-domain mobility. A novel home network prefix retrieval mechanism allows the domains to reclaim the prefixes once they are released by the mobile node. We also propose a route convergence based path update technique to reduce the transmission delay; and present a detailed experimental and analytical performance evaluation for handover delay, transmission delay, and control signaling overhead. The results show 4–9% and 30–45% gain over current work in handover delay and transmission delay, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Notes

  1. 1.

    Terms MAG and ‘gateway’; LMA and ‘anchor’; HNP and prefix are used interchangeably in this article for brevity.

References

  1. 1.

    El Hattachim, R., & Erfanian, J. (2015). 5 g white paper. Tech. Report. Next Generation Mobile Network.

  2. 2.

    G-PPP. (2016). View on 5 g architecture. Tech. Report. 5G-PPP Architecture Working Group.

  3. 3.

    Bega, D., Gramaglia, M., et al. (2017). Toward the network of the future: From enabling technologies to 5 g concepts. Transactions on Emerging Telecommunications Technologies,28(8), e3205.

    Article  Google Scholar 

  4. 4.

    Gundavelli, S., Leung, K., et al. (2008). Proxy mobile ipv6. RFC 5213. Internet Engineering Task Force.

  5. 5.

    Giust, F., Cominardi, L., et al. (2015). Distributed mobility management for future 5 g networks: overview and analysis of existing approaches. IEEE Communications Magazine,53(1), 142–149.

    Article  Google Scholar 

  6. 6.

    Neumann, N., Lei, J., et al. (2009). I-pmip: An inter-domain mobility extension for proxy-mobile ip. In 5th ACM IWCMC.

  7. 7.

    Zhon, F., Yeo, C. K., et al. (2010). Enabling inter-pmipv6-domain handover with traffic distributors. Journal of Network and Computer Applications,33(4), 397–409.

    Article  Google Scholar 

  8. 8.

    Al-Surmi, I., Othman, M., et al. (2013). Enhancing inter-pmipv6-domain for superior handover performance across ip based wireless domain networks. Wireless Networks,19(6), 1317–1336.

    Article  Google Scholar 

  9. 9.

    Nguyen, T. T., & Bonnet, C. (2013). Dmm-based inter-domain mobility support for proxy mobile ipv6. In 15th IEEE WCNC.

  10. 10.

    Yegin, A., Moses, D., et al. (2017). On demand mobility management. Internet-draft. Internet Engineering Task Force.

  11. 11.

    Raza, S. M., Thorat, P., et al. (2016). Sdn based inter-domain mobility for pmipv6 with route optimization. In 2nd IEEE NetSoft.

  12. 12.

    Raza, S. M., Thorat, P., et al. (2017). On demand inter domain mobility in sdn based proxy mobile ipv6. In 31st IEEE ICOIN.

  13. 13.

    Kim, S. M., Choi, H. Y., et al. (2014). Openflow-based proxy mobile ipv6 over software defined network. In 11th IEEE CCNC.

  14. 14.

    Bradai, A., Benslimane, A., et al. (2015). Dynamic anchor points selection for mobility management in software-defined networks. Journal of Network and Computer Applications,57, 1–11.

    Article  Google Scholar 

  15. 15.

    Kim, H., Jeon, S., et al. (2018). Service-aware split point selection for user centric mobility enhancement in sdn. In 12th ACM IMCOM.

  16. 16.

    Raza, S. M., Kim, D. S., et al. (2016). Leveraging proxy mobile ipv6 with software-defined networking. Journal of Communications and Networks,18(3), 460–475.

    Article  Google Scholar 

  17. 17.

    McKeown, N., Anderson, T., et al. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review,38(2), 69–74.

    Article  Google Scholar 

  18. 18.

    Open Networking Foundation. (2012). Openflow switch specification. Tech. Specification 007 V1.3.1.

  19. 19.

    Crawford, M., & Haberman, B. (2006). Ipv6 node information query. Experimental RFC 4620. Internet Engineering Task Force.

  20. 20.

    Al-Hashimi, H. A., Abu Bakar, K., et al. (2010). Inter-domain proxy mobile ipv6 based vehicular network. Network Protocols and Algorithms,2(4), 1–15.

    Google Scholar 

  21. 21.

    Hussain, H. N., Abu-bakar, K., et al. (2011). A novel intra-domain continues handover solution for inter-domain pmipv6 based vehicular network. International Journal of Advanced Computer Science and Applications,2(12), 12–18.

    Article  Google Scholar 

  22. 22.

    Li, L. E., Mao, Z. M., et al. (2012). Toward software-defined cellular networks. In EWSDN.

  23. 23.

    Pentikousis, K., Wang, Y., et al. (2013). Mobileflow: Toward software defined mobile networks. IEEE Communications Magazine,51(7), 44–53.

    Article  Google Scholar 

  24. 24.

    Jeon, S., Guimaraes, C., et al. (2014). Sdn-based mobile networking for cellular operators. In 14th ACM MobiArch.

  25. 25.

    Karimzadeh, M., Valtulina, L., et al. (2017). Double-nat based mobility management for future lte networks. In 15th IEEE WCNC.

  26. 26.

    Karimzadeh, M., Valtulina, L., et al. (2017). Software defined networking to support ip address mobility in future lte network. In Wireless days.

  27. 27.

    Rekhter, Y., Li, T., et al. (2006). A border gateway protocol 4. RFC 4271. Internet Engineering Task Force.

  28. 28.

    Labovitz, C., Ahuja, A., et al. (2001). Delayed internet routing convergence. IEEE/ACM Transactions on Networking,9(3), 293–206.

    Article  Google Scholar 

  29. 29.

    Pei, D., Azuma, M., et al. (2005). Bgp-rcn: Improving bgp convergence through root cause notification. Journal of Computer Networks,48(2), 175–194.

    MATH  Article  Google Scholar 

  30. 30.

    Fabrikant, A., Syed, U., et al. (2011). There’s something about mrai: Timing diversity can exponentially worsen bgp convergence. In 30th IEEE INFOCOM.

  31. 31.

    Berde, P., Gerola, M., et al. (2014). Onos: Towards an open, distributed sdn os. In 3rd ACM HotSDN.

  32. 32.

    Lee, J. H., Yan, Z., et al. (2011). Enhancing qos of mobile devices by a new handover process in pmipv6 networks. Wireless Personal Communications,61(4), 591–602.

    Article  Google Scholar 

  33. 33.

    Lee, J. H., Ernst, T., et al. (2012). Performance analysis of pmipv6-based network mobility for intelligent transportation systems. IEEE Transactions on Vehicular Technology,61(1), 74–85.

    Article  Google Scholar 

  34. 34.

    Zhao, X., Liu, Y., et al. (2010). On the aggregatability of router forwarding tables. In IEEE INFOCOM.

  35. 35.

    Zhang, B., Massey, D., et al. (2004). Destination reachability and bgp convergence time. In IEEE GLOBECOM.

  36. 36.

    Pack, S., Nam, M., et al. (2006). An adaptive mobility anchor point selection scheme in hierarchical mobile ipv6 networks. Computer Communications,29(16), 3066–3078.

    Article  Google Scholar 

  37. 37.

    Makaya, C., & Pierre, S. (2008). An analytical framework for performance evaluation of ipv6-based mobility management protocols. IEEE Transactions on Wireless Communications,7(3), 972–983.

    Article  Google Scholar 

  38. 38.

    Cisco. (2017). Cisco visual networking index: Global mobile data traffic forecast update white paper. Tech. Report.

  39. 39.

    Lantz, B., Heller, B., et al. (2010). A network in a laptop: Rapid prototyping for software-defined networks. In 9th ACM HotNets.

  40. 40.

    Open source router kernel for embedded devices. https://openwrt.org/. Retrieved 10 May 2017.

  41. 41.

    Cpqd: Implementation of openflow v1.3 for controller and switch. https://github.com/CPqD/. Retrieved 10 May 2017.

Download references

Acknowledgements

This work is partly supported by the Ministry of Education and Institute of Information and Communications Technology Promotion (IITP), Korea under the GITRC support program (IITP-2018-2015-0-00742), AI Graduate School Support Program (No.2019-0-00421), and Development of Access Technology Agnostic Next-Generation Networking Technology for Wired-Wireless Converged Networks (No.2015-0-00567).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Syed M. Raza or Hyunseung Choo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raza, S.M., Thorat, P., Challa, R. et al. Design and experimental evaluation of OnDemand inter-domain mobility in SDN supported PMIPv6. Wireless Netw 26, 603–620 (2020). https://doi.org/10.1007/s11276-019-02169-2

Download citation

Keywords

  • Software defined networking
  • PMIPv6
  • Inter-domain IP mobility
  • OnDemand mobility
  • 5G