Skip to main content

A survey on data aggregation techniques in IoT sensor networks

Abstract

There is a growing interest in using wireless sensor technologies in various Internet of things scenarios. Considering the huge growth of smart objects and their applications, the need to collect and analyze their product data are becoming one of the main challenges. Sensor nodes are powered by batteries, efficient operations in term of energy are critical. Toward that end, it is desirable for a sensor node to eliminate redundancies in the received data from the neighboring nodes before transferring the final data to the central station. Data aggregation is one of the influential techniques in elimination of data redundancy and improvement of energy efficiency; also it increases the lifespan of Wireless Sensor Networks. In addition, the efficient data aggregation protocol can reduce network traffic. When a specific objective takes place in a specific area, it might be detected by more than one sensor. Considering the main challenges and aspects of data aggregation in wireless sensor networks, a review on different types of data aggregation techniques and protocols are presented in this paper. The ultimate objective of this study is to make the basic foundations to develop new advanced designs based on data integration techniques and clustering that have been proposed so far. Major techniques of data integration in wireless sensor networks covering ground, underground and underwater sensor networks are presented in this paper and the applications, advantages and disadvantages of using each technique are described.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Sattarian, M., Rezazadeh, J., Farahbakhsh, R., & Bagheri, A. (2019). Indoor navigation systems based on data mining techniques in internet of things: A survey. Wireless Networks, 25(3), 1385–1402.

    Google Scholar 

  2. 2.

    Rezazadeh, J., Sandrasegaran, K., & Kong, X. (2018). A location-based smart shopping system with IoT technology. In IEEE 4th World Forum on Internet of Things (WF-IoT) (pp. 748–753). Singapore.

  3. 3.

    Rezazadeh, J., Moradi, M., Sandrasegaran, K., & Farahbakhsh, R. (2018). Transmission power adjustment scheme for mobile beacon-assisted sensor localization. IEEE Transactions on Industrial Informatics, 15, 2859–2869.

    Google Scholar 

  4. 4.

    Farahzadi, A., Shams, P., Rezazadeh, J., & Farahbakhsh, R. (2017). Middle- ware technologies for cloud of things-a survey. Digital Communications and Networks. Amsterdam: Elsevier.

    Google Scholar 

  5. 5.

    Lashkari, B., Rezazadeh, J., Farahbakhsh, R., & Sandrasegaran, K. (2019). Crowdsourcing and sensing for indoor localization in IoT: A review. IEEE Sensors Journal, 19(7), 2408–2434.

    Google Scholar 

  6. 6.

    Srisooksai, T., et al. (2012). Practical data compression in wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(1), 37–59.

    Google Scholar 

  7. 7.

    Rezazadeh, J., Subramanian, R., Sandrasegaran, K., Kong, X., Moradi, M., & Khodamoradi, F. (2018). Novel iBeacon placement for indoor positioning in IoT. IEEE Sensors Journal, 18(24), 10240–10247.

    Google Scholar 

  8. 8.

    Maraiya, K., Kamal, K., & Gupta, N. (2011). Wireless sensor network: A review on data aggregation. International Journal of Scientific and Engineering Research, 2(4), 1–6.

    Google Scholar 

  9. 9.

    Moradi, M., Thilakarathna, K., Ding, M., & Hassan, M. (2018). Impact of device population on beam alignment performance of 802.11ad. In 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates (pp. 1–6).

  10. 10.

    Sasirekha, S., & Swamynathan, S. (2015). A comparative study and analysis of data aggregation techniques in WSN. Indian Journal of Science and Technology, 8(26), 1–10.

    Google Scholar 

  11. 11.

    Kumar, V., Jain, S., & Tiwari, S. (2011). Energy efficient clustering algorithms in wireless sensor networks: A survey. IJCSI International Journal of Computer Science Issues, 8(5), 2.

    Google Scholar 

  12. 12.

    Arumugam, G. S., & Ponnuchamy, T. (2015). EE-LEACH: Development of energy-efficient LEACH protocol for data gathering in WSN. EURASIP Journal on Wireless Communications and Networking, 2015, 76.

    Google Scholar 

  13. 13.

    Sharma, A. K., & Kour, H. (2010). Hybrid energy efficient distributed protocol for heterogeneous wireless sensor network. International Journal of Computer Applications, 4(6), 1–5.

    Google Scholar 

  14. 14.

    Mao, Y., Chengfa, L., uihai, C. G., & Wu, J. (2005). EECS: An energy efficient clustering scheme in wireless sensor networks. In Proceedings IPCCC, IEEE 24th International (pp. 535–540).

  15. 15.

    Li, C., Ye, M., Chen, G., & Wu, J. (2005). An energy efficient unequal clustering mechanism for wireless sensor networks. In Proceedings of IEEE international conference on mobile Adhoc and sensor systems conference (MASS05) (pp. 604–611).

  16. 16.

    Amish, A. D., Prakash, R., Vuong, T., & Huynh, D. (2000). Max-min d- cluster formation in wireless ad hoc networks. In 19th IEEE annual joint proceeding on computer and communication societies (Vol. 1, pp. 32–41).

  17. 17.

    Khurana, B. P., & Kant, K. (2016). LEACH-MAC: A newcluster head selection algorithm for wireless sensor networks. Wireless Networks, 22, 49–60.

    Google Scholar 

  18. 18.

    Halder, S., Ghosal, A., & Conti, M. (2018). LiMCA: An optimal clustering algorithm for lifetime maximization of internet of things. Wireless Networks. https://doi.org/10.1007/s11276-018-1741-0.

    Article  Google Scholar 

  19. 19.

    Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012b). Message-efficient localization in mobile wireless sensor networks. Journal of Communication and Computer (JCC), 9(3), 340–344.

    Google Scholar 

  20. 20.

    Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A reverse localization scheme for underwater acoustic sensor networks. Sensors, 12, 4352–4380.

    Google Scholar 

  21. 21.

    Wang, R., Guozhi, L., & Zheng, C. (2006). A clustering algorithm based on virtual area partitionfor heterogeneous wireless sensor networks. In Proceedings of the international conference on mechatronics and automation (pp. 372–376).

  22. 22.

    Zainalie, S., & Yaghmaee, M. H. (2008). CFL: A clustering algorithm for localization in wireless sensor networks. International Symposium on Telecommunications IEEE (pp. 435–439), ISSN:978-1-4244-2751-2/08.

  23. 23.

    Chang-Ri, L., Yun, Z., Xian-ha, Z., & Zibo, Z. (2006). A clustering algorithm based on cell combination for wireless sensor networks. In 2nd International Workshop on Education Technology and Computer Science (pp. 74–77).

  24. 24.

    Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power efficient gathering in sensor information systems. IEEE Aerospace Conference Proceedings, 3, 1125–1130.

    Google Scholar 

  25. 25.

    Chen, K. H., Huang, J. M., & Hsiao, C. C. (2009). Chiron: An energyefficient chain-based hierarchical routing protocol in wireless sensor networks. In Proceeding of IEEE Symposium on Wireless Telecommunications (WTS-2009), Prague (pp. 1–5).

  26. 26.

    Linping, W., Wu, B., Zhen, C., & Zufeng, W. (2010). Improvedalgorithm of PEGASIS protocol introducing double cluster heads inwireless sensor network. IEEE International Conference on Computer, Mechatronics, Control and Electronic Engineering (pp. 148–151).

  27. 27.

    Rajagopalan, R., & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: A survey. Electrical Engineering and Computer Science (p. 53).

  28. 28.

    Miah, M. S., & Koo, I. (2012). Performance analysis of ILEACH and LEACH protocols for wireless sensor networks. Journal of Information and Communication Convergence Engineering, 10(4), 384–389.

    Google Scholar 

  29. 29.

    Kaur, S., & Vashisht, R. (2014). Hybrid approach of data aggregation (HADA) based on iLEACH in WSNs. American Journal of Advanced Computing, I(2), 24–30.

    Google Scholar 

  30. 30.

    Fan, K. W., Liu, S., & Sinha, P. (2006). On the potential of structure-free data aggregation in sensor networks. In Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, Barcelona (pp. 1–12). https://doi.org/10.1109/INFOCOM.2006.192.

  31. 31.

    Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012). Mobile wireless sensor networks overview. International Journal of Computer Communications and Networks, 2(1), 17–22.

    Google Scholar 

  32. 32.

    Ding, M., Cheng, X., & Xue, G. (2003). Aggregation tree construction in sensor networks. IEEE 58th Vehicular Technology Conference (pp. 2168–2172).

  33. 33.

    Chatterjea, S., & Havinga, P. (2003). A dynamic data aggregation scheme for wireless sensor networks. In Proceedings of Program for Research on Integrated Systems and Circuits; Veldhoven, the Netherlands (pp. 26–27).

  34. 34.

    Madden, S., Franklin, M. J., Hellerstein, J. M., & TAG, H. W. (2002). A tiny aggregation service for ad-hoc sensor networks. In Proceedings of 5th Symposium on Operating Systems Design and Implementation (OSDI’02), 36(SI), 131–46.

  35. 35.

    Xu, J., Yang, G., & Chen, Z. Y. (2011). Performance analysis of data aggregation algorithms in wireless sensor networks. IEEE.

  36. 36.

    Rahman, H., Ahmed, N., & Hussain, M.I. (2016). A hybrid dataaggregation scheme for provisioning Quality of Service (QoS) inInternet of Things (IoT). In Cloudification of the Internet ofThings (CIoT), Paris (pp. 1–5). https://doi.org/10.1109/CIOT.2016.7872917.

  37. 37.

    Satapathy, S. S., & Sarma, N. (2006). TREEPSI: Tree based energy efficient protocol for sensor information. In IFIP international conference on wireless and optical communications networks, Bangalore (p. 4).

  38. 38.

    Messina, D., Ortolani, M., & Lo Re, G.(2007). A network protocol to enhance robustness in tree-based WSN’s using data aggregation. In IEEE international conference on mobile adhoc and sensor systems.

  39. 39.

    Yu, L., Wang, N., Zhang, W., & Zheng, C. (2006). GROUP: A grid-clustering routing protocol for wireless sensor networks. In Wireless communications, networking and mobile computing (pp. 1–5).

  40. 40.

    Yu, L. (2006). Study on grid-clustering routing protocol and data aggregation for wireless sensor networks (pp. 1–5). Shanghai: East China Normal University.

    Google Scholar 

  41. 41.

    Huang, K. C, Yen, Y. S, & Chao, H. C. (2007). Tree-clustered data gathering protocol (TCDGP) for wireless sensor networks. In Proceedings of international congress FGCN’07 (pp. 31–6).

  42. 42.

    Tang, F., You, I., Guo, S., Guo, M., & Ma, Y. (2012). A chain-cluster based routing algorithm for wireless sensor networks. Journal of Intelligent Manufacturing, 23(4), 1305–1313

  43. 43.

    guo, W., Xiong, N., Vasilakos, A. V., Chen, G., & Cheng, H. (2011). Multi source temporal data aggregation in wireless sensor networks. Wireless Personal Communications, 56, 359–370.

    Google Scholar 

  44. 44.

    Veeramachaneni, K., & Osadciw, L. A. (2004). Dynamic sensor management using multi objective particle swarm optimizer. In Swarm optimizer, SPIE Defence and Security Symposium, April 16–20.

  45. 45.

    Veeramachaneni, K., & Osadciw, L. A. (2008). Swarm intelligence based optimization and control of decentralized serial sensor networks. In Proceedings of the IEEE Swarm Intelligence Symposium (pp. 1–8).

  46. 46.

    Wimalajeewa, T., & Jayaweera, S. K. (2008). Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO. IEEE Transactions on Wireless Communications, 7(9), 3608–3618.

    Google Scholar 

  47. 47.

    Croce, S., Marcelloni, F., & Vecchio, M. (2008). Reducing power consumption in wireless sensor networks using a novel approach to data aggregation. The Computer Journal, 51(2), 227–239.

    Google Scholar 

  48. 48.

    BabuKaruppiah, A., & Kannadhasan, S. (2013). A novel approach to detect the shortest path for secure data aggregation using fuzzy logic in wireless sensor networks. International Journal Of Engineering And Computer Science, 2(2), 506–510. ISSN:2319-7242.

    Google Scholar 

  49. 49.

    Islam, Obidul, & Hussain, Sajid. (Jan. 2007). Genetic algorithm for data aggregation trees in wireless sensor networks. In 3rd IET international conference on intelligent environments (pp. 312–316).

  50. 50.

    Parvin, R., & Vasanthanayaki, C. (2012). Modified OCABTR based hierarchical two level data aggregation in WSNs. International Journal on Computer Science and Engineering, 4(3), 469–478.

    Google Scholar 

  51. 51.

    Misra, R., Mandal, C. (2006). Ant aggregation: ACO for optimal data aggregation in wireless sensor. In Networks Proceedings of the 3rd IEEE and IFIP International Conference on Wireless and Optical Communications Networks(WCON 2006), Le meridian, Bangalore, India, Apr 11–13.

  52. 52.

    Chatterjea, S., & Havinga, P. (2003). CLUDDA-Clustered diffusion with dynamic data aggregation. Ajaccio, Corsica, France: Cabernet Radicals Workshop (pp. 1–6).

  53. 53.

    Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012). Fundamental metrics for wireless sensor networks localization. International Journal of Electrical and Computer Engineering (IJECE), 2(4), 452–455.

    Google Scholar 

  54. 54.

    Jiang, M., Li, J., & Tay, Y. C. (1999). Cluster Based Routing Protocol (CBRP). IETF MANET Working Group Internet -Draft.

  55. 55.

    Kulik, J., Heinzelman, W. R., & Balakrishnan, H. (2002). Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless Networks, 8(2/3), 169–85.

    MATH  Google Scholar 

  56. 56.

    Govindan, I. R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on mobile computing and networking (MobiCOM ‘00) (pp. 56–67).

  57. 57.

    Braginsky, D., & Estrin, D. (2002). Rumor routing algorithm for sensor networks. In Proceedings of 1st workshop on sensor networks and application (pp. 22–31). Atlanta: GA.

  58. 58.

    Chu, M., Haussecker, H., & Zhao, F. (2002). Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks. The International Journal of High Performance Computing Applications, 16(3), 293–313.

    Google Scholar 

  59. 59.

    Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. SIGMOD Record, 31(3), 9–18.

    Google Scholar 

  60. 60.

    Sadagopan, N., Krishnamachari, B., & Helmy, A. (2003). The ACQUIRE mechanism for efficient querying in sensor networks. In Proceedings of the 1st IEEE international workshop on sensor network protocols and applications (SNPA) (pp. 149–55). Anchorage: AK.

  61. 61.

    Shi, S., Liu, X., Gu, X. (2012). An energy-efficiency Optimized LEACH-C for wireless sensor networks. In 7th International ICST conference on communications and networking in China (CHINACOM) (pp. 487–492).

  62. 62.

    Yoon, S., & Shahabi, C. (2007). The Clustered AggreGation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 3(1), 3.

    Google Scholar 

  63. 63.

    Manjeshwar, A., & Agarwal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In 1st International workshop on parallel and distribution of computer issues in wireless networks and mobile computers (p. 30189a).

  64. 64.

    Tabassum, N., Mamun, Q. E. K. M., & Urano, Q. (2006). COSEN: A chain oriented sensor network for efficient data collection. In Proceedings of the Global Telecommunications Conference, April 10–12.

  65. 65.

    Chen, K. H., Huang, J. M., & Hsiao, C. C. (2009). CHIRON: An energy-efficient chain-based hierarchical routing protocol in wireless sensor networks (pp. 1–5). IEEE.

  66. 66.

    Hossein Anisi, M., Rezazadeh, J., & Dehghan, M. (2008). FEDA: Fault-tolerant energy-efficient data aggregation in wireless sensor networks. In 16th International conference on software, telecommunications and computer networks, Split, (pp. 188–192).

  67. 67.

    Guleria, K., & Kumar Verma, A. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks, 25(3), 1159–1183.

    Google Scholar 

  68. 68.

    Pourghebleh, B., & Navimipour, N. J. (2017). Data aggregation mechanisms in the Internet of things: a systematic review of the literature and recommendations for future research. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2017.08.006.

    Google Scholar 

  69. 69.

    Li, A., & Xiao, J. (2012). Efficient data gathering algorithm in wireless sensor networks with optimal-path mobile sink. Journal of Computational Information Systems, 8(22), 9269–9279.

    Google Scholar 

  70. 70.

    Sahraei, S. H., Kashani, M. M. R., Rezazadeh, J., & Farah-Bakhsh, R. (2018). Efficient job scheduling in cloud computing based on genetic algorithm. International Journal of Communication Networks and Distributed Systems, 22, 447–467.

    Google Scholar 

  71. 71.

    Farhadian, F., Kashani, M. M. R., Rezazadeh, J., Farah-Bakhsh, R., & Sandrasegaran, K. (2019). An efficient IoT cloud energy consumption based on genetic algorithm. Digital Communications and Networks.

  72. 72.

    Gunathillake, A., Moradi, M., Thilakarathna, K., Jayasumana, A. P., & Savkin, A. V. (2017). Topology maps for 3D millimeter wave sensor networks with directional antennas. In IEEE 42nd conference on local computer networks (LCN), Singapore (pp. 453–461).

  73. 73.

    Akyildiz, I. F., & Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks, 4, 669–686.

    Google Scholar 

  74. 74.

    Rezazadeh, J., Moradi, M., & Ismail, A. (2011). Efficient localization via middle-node cooperation in wireless sensor net- works. In Proceedings of INECCE (pp. 410–415).

  75. 75.

    Wahi, C., & Sonbhadra, S. K. (2012). Mobile ad hoc network routing protocols: A comparative study. International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC), 3(2), 57–62.

    Google Scholar 

  76. 76.

    Ali, A., & Akbar, Z. (2009). Evaluation of AODV and DSR routing protocols of wireless sensor networks for monitoring applications. Master’s Degree Thesis, Karlskrona.

  77. 77.

    Royer, E. M., & Chai-Keong, T. (1999). A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications, 6(2), 46–55.

    Google Scholar 

  78. 78.

    Sharma, R., & Lobiyal, D. K. (2015). Proficiency analysis of AODV, DSR and TORA ad-hoc routing protocols for energy holes problem in wireless sensor networks. Procedia Computer Science, 57, 1057–1066. ISSN 1877-0509.

    Google Scholar 

  79. 79.

    Javaid, N., Hussain, S., Ahmad, A., Imran, M., Khan, A., & Guizani, M. (2017). Region based cooperative routing in underwater wireless sensor networks. Journal of Network and Computer Applications, 92(15), 31–41.

    Google Scholar 

  80. 80.

    Tomar, S. K. (2013). A parametric chain based routing approach for underwater sensor network. International Journal of Computer Trends and Technology (IJCTT), 4(5), 1492–1495.

    Google Scholar 

  81. 81.

    Xie, P., Cui, J.-H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications systems (pp. 1216–21). Berlin: Springer.

  82. 82.

    Chao, C.-M., & Hsiao, T.-Y. (2009). Design of structure-free and energy-balanced data aggregation in wireless sensor networks. In 11th IEEE international conference on high performance computing and communications (pp. 222–229).

  83. 83.

    Heinzelman, W. B., Chandrakasanand, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless micro sensor networks. IEEE Transaction on Wireless Communication, 1(4), 660–670.

    Google Scholar 

  84. 84.

    Shin, D., Lee, S., & Kim, D. (2011). Location-based k-ACK aggregation method for underwater sensor networks. In IEEE Oceans (pp. 1–5).

  85. 85.

    Jinming, C., Xiaobingand, W., & Guihai, C. (2008). REBAR: Reliable and energy balanced routing algorithm for underwater sensor networks. Proceedings of the 7th IEEE international conference on gridand cooperative computing (pp. 349–355).

  86. 86.

    Anupama, K. R., Sasidharanand, A., & Vadlamani, S. (2008). Alocation-based clustering algorithm for data gathering 3- D underwater wireless sensor networks. In Proceedings of the International Symposium on Telecommunications, Tehran (pp. 343–348).

  87. 87.

    Wu, Z., Tian, C., Jiang, H., & Liu, W. (2011). Minimum-latency aggregation scheduling in underwater sensor networks. IEEE Communications Society (pp. 1–5).

  88. 88.

    Pu, W., & Jun, L. Chengand, Z. (2007). Distributed minimum—Cost clustering protocol for underwater sensor networks (UWSNs). Proceedings of the IEEE international conference on communications, Scotland (pp. 3510–3515).

  89. 89.

    Tonghong, L. (2008). Multi-sink opportunistic routing protocol for underwater mesh network. In Proceedings of the international conference on communications, circuits and systems.

  90. 90.

    Huang, C.-J., Wang, Y.-W., Lin, C.-F., Chen, Y.-T., Chen, H.-M., Shen, H.-Y., et al. (2011). A self-healing clustering algorithm for underwater sensor networks. Cluster Computing, 14, 91–99.

    Google Scholar 

  91. 91.

    Seah, W. K. G., & Tan, H. P. (2006). Multi path virtual Sink architecture for wireless sensor network Sink harsh environments. In Proceedings of the 1st international conference on integrated internet adhoc and sensor networks, France.

  92. 92.

    Mukherjee, Y. B., & Ghosal, D. (2008). Wireless sensor networksurvey. Computer Networks, 52(12), 2292–2330.

    Google Scholar 

  93. 93.

    Seah, W. K. G., & Tan, H. X. (2006). Multipath virtual sink architecture for underwater sensor networks. In Proceedings of the IEEE OCEANS AsiaPacific Conference, Singapore (pp. 16–19).

  94. 94.

    Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Google Scholar 

  95. 95.

    Akyildiz, I. F., Pompili, D., & Melodia, T. (2007). State-of-the-art in protocol research for underwater acoustic sensor networks. ACM Mobile Computing and Communication Review, 11(4).

  96. 96.

    Rezazadeh, J., Moradi, M., Ismail, A. S., & Dutkiewicz, E. (2014). Superior path planning mechanism for mobile beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal, 14(9), 3052–3064.

    Google Scholar 

  97. 97.

    Rezazadeh, J., Moradi, M., Ismail, A. S., & Dutkiewicz, E. (2015). Impact of static trajectories on localization in wireless sensor networks. Wireless Networks, 21(3), 809–827.

    Google Scholar 

  98. 98.

    Bangash, J. I., Abdullah, A. H., Anisi, M. H., & Khan, A. W. (2014). A survey of routing protocols in wireless body sensor networks. Sensors, 14, 1322–1357.

    Google Scholar 

  99. 99.

    Movassaghi, S., Abolhasan, M., & Lipman, J. (2013). A review of routing protocols in wireless body area networks. Journal of Networks, 8, 559–575.

    Google Scholar 

  100. 100.

    Culpepper, B. J., Dung, L., & Moh, M. (2004). Design and analysis of hybrid indirect transmissions (HIT) for data gathering in wireless micro sensor networks. ACM SIGMOBILE Mobile Computing and Communication Review, 8, 61–83.

    Google Scholar 

  101. 101.

    Watteyne, T., AugéBlum, I., Dohler, M., & Barthel, D. (2007). Anybody: A self-organization protocol for body area networks. In Proceedings of the ICST 2nd International Conference on Body Area Networks, Brussels, Belgium (pp. 11–13).

  102. 102.

    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless micro sensor networks. IEEE Transactions on Wireless communications, 1, 660–670.

    Google Scholar 

  103. 103.

    Karamitsios, K., & Orphanoudakis, T. (2017). Efficient, IoT data aggregation for connected health applications. IEEE Symposium on Computers and Communications (ISCC), Heraklion (pp. 1182–1185). https://doi.org/10.1109/ISCC.2017.8024685.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javad Rezazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasian Dehkordi, S., Farajzadeh, K., Rezazadeh, J. et al. A survey on data aggregation techniques in IoT sensor networks. Wireless Netw 26, 1243–1263 (2020). https://doi.org/10.1007/s11276-019-02142-z

Download citation

Keywords

  • Internet of things (IoT)
  • Wireless sensor networks (WSN)
  • Data aggregation
  • Routing