Skip to main content

Advertisement

Log in

An energy efficient stable clustering approach using fuzzy extended grey wolf optimization algorithm for WSNs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor network (WSN) is a cost-effective networking solution for information updating in the coverage radius or in the sensing region. To record a real-time event, a large number of sensor nodes (SNs) need to be arranged systematically, such that information collection is possible for a longer span of time. But, the hurdle faced by WSN is the limited resources of SNs. Hence, there is a high demand to design and implement an energy-efficient scheme to prolong the performance parameters of WSN. Clustering-based routing is the most suitable approach to support for load balancing, fault tolerance, and reliable communication to prolong performance parameters of WSN. These performance parameters are achieved at the cost of reduced lifetime of cluster head (CH). To overcome such limitations in clustering based hierarchical approach, efficient CH selection algorithm, and optimized routing algorithm are essential to design efficient solution for larger scale networks. In this paper, fuzzy extended grey wolf optimization algorithm based threshold-sensitive energy-efficient clustering protocol is proposed to prolong the stability period of the network. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in the context of energy consumption, stability period and system lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Afsar, M. M., & Tayarani-N, M. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.

    Article  Google Scholar 

  2. Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2017). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks, 23(1), 249–266.

    Article  Google Scholar 

  3. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications, Surveys and Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  4. Halawani, S., & Khan, A. W. (2010). Sensors lifetime enhancement techniques in wireless sensor networks—A survey. Journal of Computing, 2(5), 34–47.

    Google Scholar 

  5. Idris, M. Y. I., Znaid, A. M. A., Wahab, A. W. A., Qabajeh, L. K., & Mahdi, O. A. (2017). Low communication cost (LCC) scheme for localizing mobile wireless sensor networks. Wireless Networks, 23(3), 737–747.

    Article  Google Scholar 

  6. Heinzelman, W. B., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii International Conference on System Siences (HICSS-33) (p. 223). IEEE, https://doi.org/10.1109/hicss.2000.926982.

  7. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  8. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In 15th International Parallel and Distributed Processing Symposium (IPDPS’01) Workshops, USA, California (pp. 2009–2015).

  9. Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12, 1950–1957. https://doi.org/10.1016/j.asoc.2011.04.007.

    Article  Google Scholar 

  10. Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1, 195–203. https://doi.org/10.1016/j.swevo.2011.06.004.

    Article  Google Scholar 

  11. Khalil, E. A., & Attea, B. A. (2013). Stable-aware evolutionary routing protocol for wireless sensor networks. Wireless Personal Communications, 69(4), 1799–1817.

    Article  Google Scholar 

  12. Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wireless sensor networks. Journal of Networking, 2, 87–97.

    Google Scholar 

  13. Mittal, N., Singh, U., & Sohi, B. S. (2017). A novel energy efficient stable clustering approach for wireless sensor networks. Wireless Personal Communications, 95(3), 2947–2971.

    Article  Google Scholar 

  14. Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.

    Article  Google Scholar 

  15. Karaboga, D., Okdem, S., & Ozturk, C. (2012). Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Networks, 18, 847–860.

    Article  Google Scholar 

  16. Mittal, N., Singh, U., & Sohi, B. S. (2016). Harmony search algorithm based threshold-sensitive energy-efficient clustering protocols for WSNs. Adhoc and Sensor Wireless Networks, 36(1–4), 149–174.

    Google Scholar 

  17. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  18. Mittal, N., Singh, U., & Sohi, B. S. (2018). A boolean spider monkey optimization based energy efficient clustering approach for WSNs. Wireless Networks, 24(6), 2093–2109.

    Article  Google Scholar 

  19. Mittal, N. (2018). Moth flame optimization based energy efficient stable clustered routing approach for wireless sensor networks. Wireless Personal Communications, 104, 677–694. https://doi.org/10.1007/s11277-018-6043-4.

    Article  Google Scholar 

  20. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  21. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of the international workshop on SANPA. http://open.bu.edu/xmlui/bitstream/handle/2144/1548/2004-022-sep.pdf?sequence=1. Accessed 5 Sept 2018.

  22. Aderohunmu, F. A., Deng, J. D., & Purvis, M. K. (2011). Enhancing clustering in wireless sensor networks with energy heterogeneity. International Journal of Business Data Communications and Networking, 7(4), 18–32.

    Article  Google Scholar 

  23. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor network. Computer Communications, 29, 2230–2237. https://doi.org/10.1016/j.comcom.2006.02.017.

    Article  Google Scholar 

  24. Kang, S. H., & Nguyen, T. (2012). Distance based thresholds for cluster head selection in wireless sensor networks. IEEE Communications Letters, 16(9), 1396–1399. https://doi.org/10.1109/LCOMM.2012.073112.120450.

    Article  Google Scholar 

  25. Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32, 662–667. https://doi.org/10.1016/j.comcom.2008.11.025.

    Article  Google Scholar 

  26. Kumar, D. (2014). Performance analysis of energy efficient clustering protocols for maximising lifetime of wireless sensor networks. IET Wireless Sensor Systems, 4(1), 9–16. https://doi.org/10.1049/iet-wss.2012.0150.

    Article  Google Scholar 

  27. Tarhani, M., Kavian, Y. S., & Siavoshi, S. (2014). SEECH: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sensors Journal, 14(11), 3944–3954. https://doi.org/10.1109/JSEN.2014.2358567.

    Article  Google Scholar 

  28. Aderohunmu, F. A., Deng, J. D., & Purvis, M. K. (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks. In Proceedings of the 7th international conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP ‘11) (pp. 341–346). IEEE, https://doi.org/10.1109/issnip.2011.6146592.

  29. Mittal, N., & Singh, U. (2015). Distance-based residual energy-efficient stable election protocol for WSNs. Arabian Journal of Science and Engineering, 40(6), 1637–1646. https://doi.org/10.1007/s13369-015-1641-x.

    Article  Google Scholar 

  30. Mittal, N., Singh, U., & Sohi, B. S. (2016). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks, 23, 1809–1821. https://doi.org/10.1007/s11276-016-1255-6.

    Article  Google Scholar 

  31. Manjeshwar, A., Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In International parallel and distributed processing symposium, Florida (pp. 195–202).

  32. Adnan, Md. A., Razzaque, M. A., Ahmed, I., & Isnin, I. F. (2014). Bio-mimic optimization strategies in wireless sensor networks: A survey. Sensors, 14, 299–345. https://doi.org/10.3390/s140100299.

    Article  Google Scholar 

  33. Hussain, S., & Matin, A. W. (2006). Hierarchical cluster-based routing in wireless sensor networks. In IEEE/ACM International conference on Information Processing in Sensor Networks, IPSN.

  34. Mittal, N., Singh, U., & Sohi, B. S. (2018). An energy aware cluster-based stable protocol for wireless sensor networks. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3542-x.

    Article  Google Scholar 

  35. Gupta, I., Riordan, D., & Sampalli, S. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In 3rd Annual communication networks and services research conference (pp. 255–260).

  36. Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using fuzzy logic. Journal of Information and Computational Science, 7(3), 767–775.

    Google Scholar 

  37. Kim, J. M., Park, S. H., Han, Y. J., & Chung, T. M. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th International conference on advanced communication technology, Vol. 1 (pp. 654–659).

  38. Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151–165.

    Article  Google Scholar 

  39. Tomar, G. S., Sharma, T., & Kumar, B. (2015). Fuzzy based ant colony optimization approach for wireless sensor network. Wireless Personal Communication, 84, 361–375.

    Article  Google Scholar 

  40. Tamandani, Y. K., & Bokhari, M. U. (2015). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22(2), 647–653.

    Article  Google Scholar 

  41. Obaidy, M. Al., & Ayesh, A. (2015). Energy efficient algorithm for swarmed sensors networks. Sustainable Computing: Informatics and Systems, 5, 54–63.

    Google Scholar 

  42. Mittal, N., Singh, U., Salgotra, R., & Bansal, M. (2019). An energy efficient stable clustering approach using fuzzy enhanced flower pollination algorithm for WSNs. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04251-4.

    Article  Google Scholar 

  43. Armin, M., Sayyed, M. M., & Mostafa, M. (2019). FMCR-CT: An energy-efficient fuzzy multi cluster-based routing with a constant threshold in wireless sensor network. Alexandria Engineering Journal, 58(1), 127–141.

    Article  Google Scholar 

  44. Radhika, S., & Rangarajan, P. (2019). On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction. Applied Soft Computing Journal, 83, 1–9.

    Article  Google Scholar 

  45. Thangaramya, K., Kulothungan, K., Logambigai, R., Selvi, M., Ganapathy, S., & Kannan, A. (2019). Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Computer Networks. https://doi.org/10.1016/j.comnet.2019.01.024.

    Article  Google Scholar 

  46. Komaki, G. M., & Kayvanfar, V. (2015). Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. Journal of Computational Science, 8, 109–120.

    Article  Google Scholar 

  47. Kamboj, V. K., Bath, S. K., & Dhillon, J. S. (2016). Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Computing and Applications, 27(5), 1301–1316.

    Article  Google Scholar 

  48. Medjahed, S. A., Saadi, T. A., Benyettou, A., & Ouali, M. (2016). Gray Wolf Optimizer for hyperspectral band selection. Applied Soft Computing, 40, 178–186.

    Article  Google Scholar 

  49. Tizhoosh, H. R. (2005). Opposition-based learning: a new scheme for machine intelligence. In Computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, Vol. 1 (pp. 695–701).

  50. Yusof, Y., & Mustaffa, Z. (2015). Time series forecasting of energy commodity using grey wolf optimizer. In Proceedings of the international multi-conference of engineers and computer scientists, Vol. 1 (pp. 18–20).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mittal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, N., Singh, U., Salgotra, R. et al. An energy efficient stable clustering approach using fuzzy extended grey wolf optimization algorithm for WSNs. Wireless Netw 25, 5151–5172 (2019). https://doi.org/10.1007/s11276-019-02123-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02123-2

Keywords

Navigation