RFSMPF: Rank based forwarder selection in MCAST with fuzzy optimized path formation in wireless mesh network

  • S. SeethaEmail author
  • Sharmila Anand John Francis 
  • E. Grace Mary Kanaga


Wireless mesh networks (WMN) is an emerging technology right now. WMN is an infrastructure of nodes that are wirelessly connected to each other. Due to the growth of wireless device usages, the demand in quality of WMNs is increasing. Multicast routing is a mechanism in which data is communicated from one node to a set of nodes who are interested in receiving that data. Multiple issues come up from device movements that minimize the consistency of the network link. The proposed design of RFSMPF addresses the above said issue to minimize the network loss by selecting the stable forwarder using fuzzy logic system and ordering the path by assigning the rank to each path and then choose the optimal path to deliver the data to the receivers even in dense environment with minimum delay.


Wireless mesh network Multicast routing Fuzzy optimized forwarder selection Ranking based path selection Multiple constraints Best forwarder 



  1. 1.
    Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Elsevier Transactions on Computer Networks, 47, 445–487.zbMATHGoogle Scholar
  2. 2.
    Dong, J., & Nita-Rotaru, C. (2007). Enabling confidentiality for group communication in wireless mesh networks. Computer Sciences Commons 1–11.Google Scholar
  3. 3.
    Sobczak, J., & Zwierzykowski, P. (2014). Multicast routing in wireless mesh networks. In 8th Advanced international conference on telecommunications (pp. 62–68).Google Scholar
  4. 4.
    Ruiz, P. M., & Galera, F. J. (2006). Efficient multicast routing in wireless mesh networks connected to internet. In IEEE (pp. 1–10).Google Scholar
  5. 5.
    Nguyen, U. T. (2008). On multicast routing in wireless mesh networks. Elsevier Computer Communications, 31, 1385–1399.Google Scholar
  6. 6.
    Zeng, G., Wang, B., Ding, Y., Xiao, L., & Mutka, M. (2009). Efficient multicast algorithms for multichannel wireless mesh networks. IEEE Transactions on Parallel and Distributed Systems, 21(1), 86–99.Google Scholar
  7. 7.
    Lim, S.-H., Ko, Y.-B., Kim, C., & Vaidya, N. H. (2011). Design and Implementation of multicast for multi-channel multi-interface wireless mesh networks (pp. 955–972). Berlin: Springer.Google Scholar
  8. 8.
    Iqbal, M., Wang, X., Li, S., & Ellis, T. (2010). QoS scheme for multimedia multicast communications over wireless mesh networks. IET Communications, 4(11), 1312–1324.Google Scholar
  9. 9.
    Baolin, S., & Layuan, L. (2005). Multiple constraints-based QoS multicast routing: Model and algorithms. Journal of Systems Engineering and Electronics, 16(1), 187–193.zbMATHGoogle Scholar
  10. 10.
    Roy, A., Banerjee, N., & Das, S. K. (2002). An efficient multi-objective QoS routing algorithm for wireless multicasting. In IEEE (pp. 1160–1164).Google Scholar
  11. 11.
    Shojafar, M., Abolfazli, S., Mostafaei, H., & Singhal, M. (2015). Improving channel assignment in multi-radio wireless mesh networks with learning automata. Wireless Personal Communications, 82(1), 61–80.Google Scholar
  12. 12.
    Campista, M. E. M., Esposito, P. M., Moraes, I. M., et al. (2008). E S and protocols for wireless mesh networks. IEEE Networks, 22(1), 6–12.Google Scholar
  13. 13.
    Roy, S., Koutsonikolas, D., Das, S., & Charlie Hu, Y. (2006). High throughput multicast routing metrics in wireless mesh networks. IEEE, 6, 879–899.Google Scholar
  14. 14.
    Chelliah, M., Sankaran, S., Prasad, S., Gopalan, N., & Sivaselvan, B. (2012). Routing for wireless mesh networks with multiple constraints using fuzzy logic. The International Arab Journal of Information Technology, 9(1), 1–8.Google Scholar
  15. 15.
    Santhi, G., & Nachiappan, A. (2012). Fuzzy-cost based multiconstrained QoS routing with mobility prediction in MANETs. Egyptian Informatics Journal, 13(1), 19–25.Google Scholar
  16. 16.
    Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9.zbMATHGoogle Scholar
  17. 17.
    Piechowiak, M., & Prokopowicz, P. (2013). Evaluation of multicast routing algorithms with fuzzy sets. Advances in Electronics and Telecommunications, 3(5), 44–48.Google Scholar
  18. 18.
    Viswanath, K., Obraczka, K., & Tsudik, G. (2005). Exploring mesh and tree-based multicast. Routing protocols for MANETs. IEEE Transactions on Mobile Computing, 5(1), 28–42.Google Scholar
  19. 19.
    Biswas, P., Pramanik, S., & Giri, B. C. (2015). TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Computing and Applications, 27(3), 727–737.Google Scholar
  20. 20.
    Dana, A., & Babaei, M. H. (2011). A fuzzy based stable routing algorithm for MANET. International Journal of Computer Science Issues, 8(1), 367–371.Google Scholar
  21. 21.
    Philo Chaythanya, B., & Ramya, M. (2014). Fuzzy logic based approach for dynamic routing in MANET. International Journal of Engineering Research and Technology, 3(6), 1437–1441.Google Scholar
  22. 22.
    Nguyen, U. T., & Jin, X. (2007). Multicast routing in wireless mesh networks: minimum cost trees or shortest path trees. IEEE, 45(11), 72–77.Google Scholar
  23. 23.
    Latake, S. P. (2013). Tree, mesh structure based and stateless multicast routing protocols in wireless networks. International Journal of Computer Science and Information Technologies, 4(3), 0975–9646.Google Scholar
  24. 24.
    Sayedahmed, Hamdy A. M., Hefny, H. A., et al. (2017). A proposed fuzzy stability model to improve multi-hop routing protocol. International Journal of Advanced Computer Science and Applications, 8(4), 137–143.Google Scholar
  25. 25.
    Dong, J., Curtmola, R., & Nita-Rotaru, C. (2011). Secure high-throughput multicast routing in wireless mesh networks. IEEE Transactions on Mobile Computing, 10(5), 653–668.Google Scholar
  26. 26.
    Yadav, A., Das, S., & Tripathi, S. (2017). EFMMRP: Design of efficient fuzzy based multi-constraint multicast routing protocol for wireless ad-hoc network. Elsevier Transactions on Computer Networks, 118, 15–23.Google Scholar
  27. 27.
    Liansheng, L., Jiang, H., Han, G., Ma, S., & Sun, R. (2017). Multi-criteria routing metric for supporting data-differentiated service in hybrid wireless mesh networks in coal mines. International Journal of Distributed Sensor Networks, 13(1), 1–11.Google Scholar
  28. 28.
    Tsado, Y., Gamage, K., Adebisi, B., Lund, D., Rabie, K., & Ikpehai, A. (2017). Improving the reliability of optimised link state routing in a smart grid neighbour area network based wireless mesh network using multiple metrics. Energies, 10(3), 287.Google Scholar
  29. 29.
    Cacheda, R. A., García, D. C., Cuevas, A., Castano, F. J. G., Sánchez, J. H., Koltsidas, G., et al. (2007). QoS requirements for multimedia services. In Resource management in satellite networks (pp. 67–94). Boston, MA: Springer.Google Scholar
  30. 30.
    Malkin, G. S. (1993). Traceroute using an IP option. RFC 1393, p. 7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Seetha
    • 1
    Email author
  • Sharmila Anand John Francis 
    • 2
  • E. Grace Mary Kanaga
    • 1
  1. 1.Department of Computer ScienceKarunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.Department of Computer ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations