Skip to main content
Log in

Packing algorithm inspired by gravitational and electromagnetic effects

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper introduces a faster and more efficient algorithm for solving a two-dimension packing problem. This common optimization problem takes a set of geometrical objects and tries to find the best form of packing them in a space with specific characteristics, called container. The visualization of nanoscale electromagnetic fields was the inspiration for this new algorithm, using the electromagnetic field between the previously placed objects, this paper explains how to determine the best positions for to place the remaining ones. Two gravitational phenomena are also simulated to achieve better results: shaken and gravity. They help to compact the objects to reduce the occupied space. This paper shows the executions of the packing algorithm for four types of containers: rectangles, squares, triangles, and circles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Addis, B., Locatelli, M., & Schoen, F. (2008). Disk packing in a square: A new global optimization approach. Informs Journal of Computing, 20(4), 516–524.

    Article  MathSciNet  Google Scholar 

  2. Al-Mudahka, I., Hifi, M., & M’Hallah, R. (2011). Packing circles in the smallest circle: An adaptive hybrid algorithm. Journal of the Operational Research Society, 62, 1917–1930.

    Article  Google Scholar 

  3. Baltaciolu, E., Moore, J., & Hill, R, Jr. (2006). The distributor’s three-dimensional pallet-packing problem: A human intelligence-based heuristic approach. International Journal of Operational Research, 1(3), 249–266. https://doi.org/10.1504/IJOR.2006.009300.

    Article  MATH  Google Scholar 

  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.

    Article  MathSciNet  Google Scholar 

  5. Brooke, J., Bitko, D., Rosenbaum, T. F., & Aeppli, G. (1999). Quantum annealing of a disordered magnet. Management Science, 284(5415), 779–781.

    Google Scholar 

  6. Castillo, I., Kampas, F. J., & Pintr, J. D. (2008). Solving circle packing problems by global optimization: Numerical results and industrial applications. European Journal of Operational Research, 191(3), 786–802.

    Article  MathSciNet  Google Scholar 

  7. Dell’Amico, M., Dza, J. C. D., & Lori, M. (2012). The bin packing problem with precedence constraints. Operations Research, 60(6), 1491–1504.

    Article  MathSciNet  Google Scholar 

  8. Dokeroglu, T., & Cosar, A. (2014). Optimization of one-dimensional bin packing problem with island parallel grouping genetic algorithms. Computers and Industrial Engineering, 75, 176–186.

    Article  Google Scholar 

  9. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS ’95 (pp. 39–43).

  10. George, J. A., George, J. M., & Lamar, B. W. (1995). Packing different-sized circles into a rectangular container. European Journal of Operational Research, 84(3), 693–712.

    Article  Google Scholar 

  11. Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175–184.

    Article  MathSciNet  Google Scholar 

  12. Haus, J. W. (2016). Introduction to nanophotonics. In J. W. Haus (Ed.), Fundamentals and applications of nanophotonics (pp. 1–11). Sawston: Woodhead Publishing.

    Google Scholar 

  13. Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  14. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    Article  MathSciNet  Google Scholar 

  15. Litvinchev, I., & Ozuna, E. (2014). Approximate packing circles in a rectangular container: Valid inequalities and nesting. Journal of Applied Research and Technology, 12(4), 716–723. https://doi.org/10.1016/S1665-6423(14)70088-4.

    Article  Google Scholar 

  16. Martinez-Rios, F. (2017). A new hybridized algorithm based on population-based simulated annealing with an experimental study of phase transition in 3-SAT. Procedia Computer Science, 116, 427–434.

    Article  Google Scholar 

  17. Martinez-Rios, F., & Marmolejo-Saucedo, J. A. (2018). Packing instances. http://www.packingproblem.com.

  18. Huang, W. Q., Li, Y., Akeb, H., & Li, C. M. (2005). Greedy algorithms for packing unequal circles into a rectangular container. Journal of the Operational Research Society, 56, 539–548. https://doi.org/10.1057/palgrave.jors.2601836.

    Article  MATH  Google Scholar 

  19. Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.

    Article  Google Scholar 

  20. Sarangan, A. (2016). Quantum mechanics and computation in nanophotonics. In J. W. Haus (Ed.), Fundamentals and applications of nanophotonics (pp. 45–87). Sawston: Woodhead Publishing.

    Chapter  Google Scholar 

  21. Seiden, S. (2002). On the online bin packing problem. Journal of ACM, 49(5), 640–671.

    Article  MathSciNet  Google Scholar 

  22. Socha, K., Knowles, J., & Sampels, M. (2002). A MAX–MIN ant system for the university course timetabling problem (pp. 1–13). Berlin: Springer.

    Google Scholar 

  23. Steuwe, C., Erdelyi, M., Szekeres, G., Csete, M., Baumberg, J. J., Mahajan, S., et al. (2015). Visualizing electromagnetic fields at the nanoscale by single molecule localization. Nano Letters, 15(5), 3217–3223.

    Article  Google Scholar 

  24. Szabó, P. G., Markót, M. C., & Csendes, T. (2005). Global optimization in geometry—Circle packing into the square (pp. 233–265). Boston, MA: Springer.

    MATH  Google Scholar 

  25. Yan, G. W., & Hao, Z. J. (2013). A novel optimization algorithm based on atmosphere clouds model. International Journal of Computational Intelligence and Applications, 12(01), 1350002.

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to my wife Roco for her invaluable help for reviewing the styling and writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Martinez-Rios.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Rios, F., Murillo-Suarez, A. Packing algorithm inspired by gravitational and electromagnetic effects. Wireless Netw 26, 5631–5644 (2020). https://doi.org/10.1007/s11276-019-02011-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02011-9

Keywords

Navigation