An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center

  • Rahul YadavEmail author
  • Weizhe ZhangEmail author
  • Keqin Li
  • Chuanyi Liu
  • Muhammad Shafiq
  • Nabin Kumar Karn


In this paper, we address the problems of massive amount of energy consumption and service level agreements (SLAs) violation in cloud environment. Although most of the existing work proposed solutions regarding energy consumption and SLA violation for cloud data centers (CDCs), while ignoring some important factor: (1) analysing the robustness of upper CPU utilization threshold which maximize utilization of resources; (2) CPU utilization prediction based VM selection from overloaded host which reduce performance degradation time and SLA violation. In this context, we proposed adaptive heuristic algorithms, namely least medial square regression for overloaded host detection and minimum utilization prediction for VM selection from overloaded hosts. These heuristic algorithms reducing CDC energy consumption with minimal SLA. Unlike the existing algorithms, the proposed VM selection algorithm consider the types of application running and it CPU utilization at different time periods over the VMs. The proposed approaches are validated using the CloudSim simulator and through simulations for different days of a real workload trace of PlanetLab.


Cloud computing Data center Energy consumption Host overloaded detection Service level agreements and VM selection 



The National Key Research and Development Plan under Grant No. 2017YFB0801801, the National Science Foundation of China (NSFC) under Grant Nos. 61672186, 61472108, support this work.


  1. 1.
    Lambert, S., Van Heddeghem, W., Vereecken, W., Lannoo, B., Colle, D., & Pickavet, M. (2012). Worldwide electricity consumption of communication networks. Optics Express, 20(26), B513–B524.CrossRefGoogle Scholar
  2. 2.
    Barroso, L. A., & Hölzle, U. (2007). The case for energy-proportional computing. Computer, 40(12), 33–37.CrossRefGoogle Scholar
  3. 3.
    Fawaz, A.-H., Peng, Y., Youn, C.-H., Lorincz, J., Li, C., Song, G., et al. (2018). Dynamic allocation of power delivery paths in consolidated data centers based on adaptive ups switching. Computer Networks, 144, 254–270.CrossRefGoogle Scholar
  4. 4.
    Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.CrossRefGoogle Scholar
  5. 5.
    Ahmed, A., Hanan, A. A., Omprakash, K., Usman, M., & Syed, O. (2017). Mobile cloud computing energy-aware task offloading (mcc: Eto). In Proceedings of the communication and computing systems: Proceedings of the international conference on communication and computing systems (ICCCS 2016) (p. 359).Google Scholar
  6. 6.
    Xu, C., Wang, K., Li, P., Xia, R., Guo, S., & Guo, M. (2018). Renewable energy-aware big data analytics in geo-distributed data centers with reinforcement learning. IEEE Transactions on Network Science and Engineering, PP(99), 1–1.Google Scholar
  7. 7.
    Yadav, R., Zhang, W., Chen, H., & Guo, T. (2017). Mums: Energy-aware vm selection scheme for cloud data center. In 28th International workshop on database and expert systems applications (DEXA), 2017 (pp. 132–136). IEEE.Google Scholar
  8. 8.
    Hu, X., Li, P., Wang, K., Sun, Y., Zeng, D., & Guo, S. (2018). Energy management of data centers powered by fuel cells and heterogeneous energy storage. In 2018 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.Google Scholar
  9. 9.
    Wang, M., Meng, X., & Zhang, L. (2011). Consolidating virtual machines with dynamic bandwidth demand in data centers. In: INFOCOM, 2011 Proceedings IEEE (pp. 71–75). IEEE.Google Scholar
  10. 10.
    Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., et al. (2018). Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5(2), 571–580.CrossRefGoogle Scholar
  11. 11.
    Feller, E., Morin, C., & Esnault, A. (2012). A case for fully decentralized dynamic vm consolidation in clouds. In IEEE international conference on cloud computing technology and science (pp. 26–33).Google Scholar
  12. 12.
    Esfandiarpoor, S., Pahlavan, A., & Goudarzi, M. (2015). Structure-aware online virtual machine consolidation for datacenter energy improvement in cloud computing. Computers & Electrical Engineering, 42, 74–89.CrossRefGoogle Scholar
  13. 13.
    Murtazaev, A., & Oh, S. (2011). Sercon: Server consolidation algorithm using live migration of virtual machines for green computing. IETE Technical Review, 28(3), 212–231.CrossRefGoogle Scholar
  14. 14.
    Feller, E., Morin, C., & Esnault, A. (2012). A case for fully decentralized dynamic vm consolidation in clouds. In IEEE 4th international conference on cloud computing technology and science (CloudCom), 2012 (pp. 26–33). IEEE.Google Scholar
  15. 15.
    Ranganathan, P., Leech, P., Irwin, D., & Chase, J. Ensemble-level power management for dense blade servers. In ACM SIGARCH computer architecture news (Vol. 34(2), pp. 66–77). IEEE Computer Society.Google Scholar
  16. 16.
    Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.CrossRefGoogle Scholar
  17. 17.
    Verma, J. K., Kumar, S., Kaiwartya, O., Cao, Y., Lloret, J., Katti, C., et al. (2018). Enabling green computing in cloud environments: Network virtualization approach toward 5g support (p. e3434). London: Transactions on Emerging Telecommunications Technologies.Google Scholar
  18. 18.
    Zhu, X., Young, D., Watson, B. J., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C., Gmach, D., & Gardner, R. et al. (2008). 1000 islands: Integrated capacity and workload management for the next generation data center. In: International conference on autonomic computing, 2008. ICAC’08. (pp. 172–181). IEEE.Google Scholar
  19. 19.
    Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G. (2009). Power and performance management of virtualized computing environments via lookahead control. Cluster Computing, 12(1), 1–15.CrossRefGoogle Scholar
  20. 20.
    von Kistowski, J., & Kounev, S. (2016). Univariate interpolation-based modeling of power and performance. In Proceedings of the 9th EAI international conference on performance evaluation methodologies and tools (pp. 212–215). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar
  21. 21.
    All published specpowerssj2008 results. Accessed May 12, 2017.
  22. 22.
    Nathuji, R., & Schwan, K. (2007) Virtualpower: Coordinated power management in virtualized enterprise systems. In ACM SIGOPS operating systems review (Vol. 41(6), pp. 265–278). ACM.Google Scholar
  23. 23.
    Yadav, R., & Zhang, W. (2017). MeReg: Managing energy-SLA tradeoff for green mobile cloud computing. Wireless Communications and Mobile Computing, 2017, 6741972.CrossRefGoogle Scholar
  24. 24.
    Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I., et al. (2015). Using ant colony system to consolidate vms for green cloud computing. IEEE Transactions on Services Computing, 8(2), 187–198.CrossRefGoogle Scholar
  25. 25.
    Farahnakian, F., Liljeberg, P., & Plosila, J. (2013). Lircup: Linear regression based cpu usage prediction algorithm for live migration of virtual machines in data centers. In: Euromicro conference on software engineering and advanced applications (pp. 357–364).Google Scholar
  26. 26.
    Mili, L., Phaniraj, V., & Rousseeuw, P. J. (1991). Least median of squares estimation in power systems. IEEE Transactions on Power Systems, 6(2), 511–523.CrossRefGoogle Scholar
  27. 27.
    Edelsbrunner, H., & Souvaine, D. L. (1990). Computing least median of squares regression lines and guided topological sweep. Journal of the American Statistical Association, 85(409), 115–119.CrossRefGoogle Scholar
  28. 28.
    Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). Cloudsim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and experience, 41(1), 23–50.Google Scholar
  29. 29.
    Park, K., & Pai, V. S. (2006). Comon: A mostly-scalable monitoring system for planetlab. ACM SIGOPS Operating Systems Review, 40(1), 65–74.CrossRefGoogle Scholar
  30. 30.
    Shapiro, S. S., & Francia, R. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215–216.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Pengcheng LaboratoryShenzhenChina
  3. 3.Department of Computer ScienceState University of New YorkNew PaltzUSA
  4. 4.School of Computer Science and TechnologyHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations