Skip to main content

Advertisement

Log in

Performance analysis for 5G beamforming heterogeneous networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The heterogeneous network (HetNet) is an attractive solution to solve limited spectral efficiency, the increasing traffic demands, and crowded coverage. In 5G, massive multiple-input multiple-output and millimeter-wave technologies are considered to explore high array gain and alleviate high path loss with beamforming. In this paper, we propose a general tractable model for signal-to-interference-plus-noise ratio (SINR) analysis with cell expansion and beamforming for 5G. In this HetNet, each layer is characterized by particular parameters such as base station (BS) density, transmission power, beam gain, beamwidth, propagation loss, and bias factor. In our model, the expressions of outage probability for each layer and the whole network, which represent the SINR distributions, are derived through a typical user. We also analyze the rate performance by the minimum average user rates and the rate coverage probabilities. Furthermore, the spectrum reuse strategy, some layers are spectrum separation while others are spectrum sharing, are considered to consistent with the existing and future cellular network. From the simulations, system performance can be greatly improved by beamforming and affected by beamwidth, and the optimal bias changes with BS density and path loss. Furthermore, the proposed method provides practical deployment guidelines with some determined parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ezhilarasan, E., & Dinakaran, M. (2017). A review on mobile technologies: 3G, 4G and 5G. In 2017 second international conference on recent trends and challenges in computational models (ICRTCCM) (pp. 369–373).

  2. Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communcation, 21(3), 118.

    Article  Google Scholar 

  3. Wang, C. X., Haider, F., Gao, X. Q., You, X. H., Yang, Y., Yuan, D. F., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122.

    Article  Google Scholar 

  4. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communcation, 18(3), 10.

    Article  Google Scholar 

  5. Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials, 18(2), 1018.

    Article  Google Scholar 

  6. TS 36.101. (2015). Evolved Universal Terrestrial Radio Access (E-UTRA). 3GPP.

  7. Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64.

    Article  Google Scholar 

  8. Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186.

    Article  Google Scholar 

  9. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065.

    Article  Google Scholar 

  10. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 21(8), 2657.

    Article  Google Scholar 

  11. Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136.

    Article  Google Scholar 

  12. IEEE 802.11 WG. (2012). IEEE 802.11ad, Amendment 3: Enhancements for very high throughput in the 60 GHz band.

  13. Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850.

    Article  Google Scholar 

  14. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335.

    Article  Google Scholar 

  15. Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213.

    Article  Google Scholar 

  16. Rappaport, T. S., MacCartney, G. R., Sun, S., Yan, H., & Deng, S. (2017). Small-scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Transactions on Antennas and Propagation, 65(12), 6474.

    Article  Google Scholar 

  17. Han-Shin, J., Young Jin, S., Ping, X., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484.

    Article  Google Scholar 

  18. Singh, S., Dhillon, H. S., & Andrews, J. G. (2013). Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Transactions on Wireless Communications, 12(5), 2484.

    Article  Google Scholar 

  19. Chinipardaz, M., Rasti, M., & Nourhosseini, M. (2014). An overview of cell association in heterogeneous network: Load balancing and interference management perspective. In 2014 7th international symposium on telecommunications (IST) (pp. 1250–1256).

  20. Andrews, J. G., Singh, S., Ye, Q., Lin, X., & Dhillon, H. S. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications, 21(2), 18.

    Article  Google Scholar 

  21. Chen, X., Wu, J., Cai, Y., Zhang, H., & Chen, T. (2015). Energy-efficiency oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33(4), 627.

    Article  Google Scholar 

  22. Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706.

    Article  Google Scholar 

  23. Muhammad, F., Abbas, Z. H., & Li, F. Y. (2017). Cell association with load balancing in nonuniform heterogeneous cellular networks: Coverage probability and rate analysis. IEEE Transactions on Vehicular Technology, 66(6), 5241.

    Article  Google Scholar 

  24. Akoum, S., Ayach, O. E., & Heath, R. W. (2012). Coverage and capacity in mmwave cellular systems. In 2012 conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 688–692).

  25. Tianyang, B., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100.

    Article  Google Scholar 

  26. Yu, X., Zhang, J., Haenggi, M., & Letaief, K. B. (2017). Coverage Analysis for Millimeter Wave Networks: The Impact of Directional Antenna Arrays. IEEE Journal on Selected Areas in Communications, 35(7), 1498.

    Article  Google Scholar 

  27. Rebato, M., Park, J., Popovski, P., et al. (2018). Stochastic geometric coverage analysis in mmwave cellular networks with realistic channel and antenna radiation models. arXiv preprint arXiv:1806.04193.

  28. Onireti, O., Imran, A., & Imran, M. A. (2018). Coverage, capacity, and energy efficiency analysis in the uplink of mmWave cellular networks. IEEE Transactions on Vehicular Technology, 67(5), 3982–3997.

    Article  Google Scholar 

  29. Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive MIMO-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5).

  30. Yao, G., Liu, N., Pan, Z., & You, X. (2016). Coverage and rate analysis for non-uniform millimeter-wave heterogeneous cellular network. In 2016 8th international conference on wireless communications signal processing (WCSP) (pp. 1–6).

  31. Yongyu, D., Shi, J., Leyuan, P., Xiqi, G., Lei, J., & Ming, L. (2015). Interference control based on beamforming coordination for heterogeneous network with RRH deployment. IEEE Systems Journal, 9(1), 58.

    Article  Google Scholar 

  32. Liu, C. H., Liang, D. C., & Yang, J. R., et al. (2017). A generalized analytical framework for coverage evaluation in mmWave heterogeneous cellular networks in urban areas. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–7).

  33. Simic, L., Panda, S., Riihijarvi, J., & Mahonen, P. (2017). Coverage and robustness of mm-Wave urban cellular networks: Multi-frequency HetNets are the 5G future. In 2017 14th annual IEEE international conference on sensing, communication, and networking (SECON), San Diego, CA (pp. 1–9).

  34. Xie, Y., Li, B., Zuo, X., Yang, M., Yan, Z., & Xue, Q. (2016). Outage analysis for 5G beamforming heterogeneous networks. In 2016 IEEE international conference on signal processing, communications and computing (ICSPCC) (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjiang Yan.

Additional information

This work was supported in part by the National Natural Science Foundations of CHINA (Grant Nos. 61771392, 61771390 and 61501373), the National Science and Technology Major Project (Grant No. 2016ZX03001018-004), the Science and Technology on Communication Networks Laboratory Open Projects (Grant No. KX172600027), and the Fundamental Research Funds for the Central Universities (Grant No. 3102017ZY018).

Appendices

Appendix 1: Proof of Lemma 1

When \(P_{r,i}>P_{r,j}\) for all the \(j\in K , j\not =i\), the probability of the TPU associates with the BS in the ith layer can be given by

$$\begin{aligned} A_i&= E_{R_i}[{\mathbb {P}}[P_{r,i}(X_i)>\max \limits _{j,j\not =i}(P_{r,j})] ] \nonumber \\&=E_{R_i}\left[ \prod \limits _{j=1,j\not =i}^{K}{\mathbb {P}}[P_{r,i}(X_i)>P_{r,j}]\right] \nonumber \\&=E_{R_i}\left[ \prod \limits _{j=1,j\not =i}^{K}{\mathbb {P}}\left[ X_j>\Big (\frac{P_j}{P_i}\cdot \frac{B_j}{B_i}\cdot \frac{M_j}{M_i} \Big )^{1/{\alpha _{j}}} X_{i}^{{\alpha _i}/{\alpha _j}} \right] \right] \nonumber \\&=\int _0^\infty \prod \limits _{j=1,j\not =i}^{K} {\mathbb {P}}\left[ X_j> \widehat{V_j} ^{1/{\alpha _{j}}} r^{1/{\widehat{\alpha _j}}} \right] f_{X_i}(r)\mathrm {d}r, \end{aligned}$$
(21)

where \(\widehat{V_j} =\widehat{P_j}\cdot \widehat{B_j} \cdot \widehat{M_j}\),

$$\begin{aligned}&\prod \limits _{j=1,j\not =i}^{K}{\mathbb {P}}\left[ X_j> \widehat{V_j} ^{1/{\alpha _{j}}} r^{1/{\widehat{\alpha _j}}} \right] \nonumber \\&\quad =\prod \limits _{j=1,j\not =i}^{K} e^{-\pi \lambda _j( \widehat{V_j} ^{2/{\alpha _{j}}} r^{2/{\widehat{\alpha _j}}})}, \end{aligned}$$
(22)

and

$$\begin{aligned} {f_{{X_i}}}(r) = {e^{ - \pi {\lambda _i}{r^2}}}2\pi {\lambda _i}r. \end{aligned}$$
(23)

Combining (21), (22), and (23), we have

(24)

If \(\alpha _j=\alpha\), it follows that

$$\begin{aligned} A_i&= \frac{\lambda _i}{ \prod \nolimits _{j=1}^{K} \lambda _j {\widehat{V_j}}^{2/{\alpha }} }\nonumber \\&= \frac{\lambda _i}{{\mathop {\sum }\nolimits _{j = 1,j \ne i}^K} {\lambda _j}{{\widehat{V_j}}^{2/{\alpha }}} + {\lambda _i}}. \end{aligned}$$
(25)

Appendix 2: Proof of Lemma 3

\(X_i>x\) is equal to \(L_i>x\), the probability is

$$\begin{aligned} {\mathbb {P}}[X_i>x]&={\mathbb {P}}[L_i>x|n=i] \nonumber \\&= \frac{{\mathbb {P}}[L_i>x,n=i]}{{\mathbb {P}}[n=i]} =\frac{{\mathbb {P}}[L_i>x,n=i]}{A_i}, \end{aligned}$$
(26)

where

$$\begin{aligned}&{\mathbb {P}}[L_i>x,n=i] \nonumber \\&\quad ={\mathbb {P}}[{L_i}> x,{P_{r,i}}\left( {{L_i}} \right)> \mathop {\max }\limits _{j,j \ne i} ( {{P_{r,j}}} ) ] \nonumber \\&\quad =\int _0^\infty {\mathop \prod \limits _{j = 1,j \ne i}^K } {\mathbb {P}} [{P_{r,i}}( r )> {P_{r,j}}]{f_{{L_i}}}(r) \mathrm {d}r \nonumber \\&\quad = \int _{x}^{\infty } {\mathop \prod \limits _{j = 1,j \ne i}^K } {\mathbb {P}} [L_j > \widehat{V_j}^{1/{\alpha _j}}r^{1/\widehat{\alpha _j}}]f_{{L_i}}(r) \mathrm {d}r\nonumber \\&\quad = 2\pi {\lambda _i}\int _x^\infty r e^{ { - \pi \sum \limits _{j = 1}^K {\lambda _j}{{\widehat{V_j}}^{2/{\alpha _j}}}{r^{2/\widehat{{\alpha _j}}}}} }\mathrm {d}r. \end{aligned}$$
(27)

Put (27) into (26), we have

$$\begin{aligned} {\mathbb {P}}[X_i>x] = \frac{{2\pi {\lambda _i}}}{{{A_i}}}\int _x^\infty r e^{ { - \pi \sum \limits _{j = 1}^K {{\lambda _j}} {{\widehat{V_j}}^{2/{\alpha _j}}}{r^{2/\widehat{{\alpha _j}}}}} }\mathrm {d}r. \end{aligned}$$
(28)

The CDF of \(X_i\) is \(F_{{X_i}}(x)=1-{\mathbb {P}}[X_k>x]\), and PDF is

$$\begin{aligned} {f_{{X_i}}}(x)&= \frac{{\mathrm {d}{F_{{X_i}}}(x)}}{{\mathrm {d}x}} \nonumber \\&= \frac{{2\pi {\lambda _i}}}{{{A_i}}}x e^{ { - \pi \sum \limits _{j = 1}^K {{\lambda _j}} {{\widehat{V_j}}^{2/{\alpha _j}}}{x^{2/\widehat{{\alpha _j}}}}} }. \end{aligned}$$
(29)

Appendix 3: Proof of Theorem 1

From (12), we can get the outage probability of the ith layer,

$$\begin{aligned} {\mathcal {O}}_i&= 1 - \int _{0}^\infty {\mathbb {P}}{[{\text{ SINR }}_i(x)> \tau ]}{f_{{X_i}}}(x) \mathrm {d}x\nonumber \\&= 1 - \frac{{2\pi {\lambda _i}}}{{{A_i}}}\int _{0}^\infty {\mathbb {P}}{[{\text{ SINR }}_i(x) > \tau ]} \cdot x \cdot \nonumber \\&\quad \exp \left\{ - \pi \sum \limits _{j = 1}^K {\lambda _j} {{\widehat{V_j}}^{2/{\alpha _j}}}{x^{2/\widehat{{\alpha _j}}}} \right\} \mathrm {d}x, \end{aligned}$$
(30)

where \(f_{{X_i}}\) is given in Lemma 3. We can rewrite the SINR in (3) as \(\gamma _i (x) = {\text {SINR}}_{i}(x) = \frac{{{g_{i,0}}}}{{{x^{{\alpha _i}}}{{({P_i}{M_i}m)}^{ - 1}}Q}}\), where \(Q = \sum \nolimits _{j = 1}^K \omega _{ij} {{I_j} + W}\), \(I_j = \sum \nolimits _{k \in {\varPhi _j}\backslash {B_{i0}}} {{D_{jk}^*}{P_j}{h_{jk}}{{\left| {{Y_{jk}}} \right| }^{ - {\alpha _j}}}}\).

The complementary CDF of SINR of the TPU with a distance x from the associated BS in ith layer will be

$$\begin{aligned}&{\mathbb {P}}[\gamma _i (x)>\tau ] \nonumber \\&\quad ={\mathbb {P}}[{g_{i,0}} > {x^{{\alpha _i}}}{({P_i}{M_i}m)^{ - 1}}Q\tau ] \nonumber \\&\quad = \int _0^\infty \exp \left\{ { - {x^{{\alpha _i}}}{{({P_i}{M_i}m)}^{ - 1}}\tau q} \right\} {f_Q}(q) \mathrm {d}q \nonumber \\&\quad = \mathbb {E}_Q [\exp \left\{ { - {x^{{\alpha _i}}}{{({P_i}{M_i}m)}^{ - 1}}\tau q} \right\} ] \nonumber \\&\quad = \exp \left\{ \frac{-\tau }{\text {SNR}}\right\} \cdot \prod _{j=1}^K ({\mathcal{L}}_{I_j}(x^{\alpha _i}{{({P_i}{M_i}m)}^{ - 1}}\tau )) ^{\omega _{ij}}, \end{aligned}$$
(31)

the Laplace transform of \(I_j\) is

$$\begin{aligned}&{\mathcal{L}}_{I_j}(x^{\alpha _i}{{({P_i}{M_i}m)}^{ - 1}}\tau ) \nonumber \\&\quad =\mathbb {E}_{I_j} \left[ e^{-x^{\alpha _i}{{({P_i}{M_i}m)}^{ - 1}}\tau I_j} \right] \nonumber \\&\quad =\mathbb {E}_{\varPhi _j} \left[ e^{ - {x^{{\alpha _i}}}\widehat{{P_j}}{({M_j}m)^{ - 1}}\tau \sum \limits _{k \in {\varPhi _j}} {{D_{jk}^*}{h_{jk}}{{\left| {{Y_{jk}}} \right| }^{ - {\alpha _j}}}} } \right] \nonumber \\&\quad =\mathbb {E}_{\varPhi _j} \left[ \prod \limits _{k \in {\varPhi _j}} {\exp \left\{ { - {x^{{\alpha _i}}}\widehat{{P_j}}\tau \frac{{{D_{jk}^*}}}{{{M_j}m}}{h_{jk}}{{\left| {{Y_{jk}}} \right| }^{ - {\alpha _j}}}} \right\} } \right] , \end{aligned}$$
(32)

From (32), the formula can be further deduced by

$$\begin{aligned}&{\mathcal{L}}_{I_j}(x^{\alpha _i}{{({P_i}{M_i}m)}^{ - 1}}\tau ) \nonumber \\&\quad \overset{(a)}{=} \exp \left\{ - 2\pi {\lambda _j} \int _{{z_j}}^\infty {(1 - {{\mathcal{L}}_{{h_j}}}({x^{{\alpha _i}}}\widehat{P_j}\tau \frac{{{D_{j}^*}}}{{M_j}m}{y^{ - {\alpha _j}}})y \mathrm {d}y)} \right\} \nonumber \\&\quad \overset{(b)}{=} \exp \left\{ { - 2\pi {\lambda _j} \int _{{z_j}}^\infty {(1 - \frac{1}{{1 + {x^{{\alpha _i}}}\widehat{{P_j}}\tau \frac{{{D_{j}^*}}}{{{M_j}m}}{y^{ - {\alpha _j}}}}}y \mathrm {d}y)} } \right\} \nonumber \\&\quad = \exp \left\{ { - 2\pi {\lambda _j} \int _{{z_j}}^\infty {\frac{y}{{1 + {{\left( {{x^{{\alpha _i}}}\widehat{{P_j}}\tau \frac{{{D_{j}^*}}}{{{M_j}m}}} \right) }^{ - 1}}{y^{{\alpha _j}}}}}\mathrm {d}y} } \right\} , \end{aligned}$$
(33)

where (a) comes from

\(E[\prod \limits _{x \in \varPhi } {f(x)} ] = \exp \left\{ { - \lambda \int _{{R^2}} {[1 - f(x)] \mathrm {d}x} } \right\}\), and (b) follows \({h_j}\sim \exp (1)\). The interference signals are from the radius \(z_j\) of the circle to the infinity, where \({z_j} = {\widehat{V_j}^{1/{\alpha _j}}}{x^{1/\widehat{{\alpha _j}}}}\). Let \(u = {\left( {{x^{{\alpha _i}}}\widehat{{P_j}}\tau \frac{{{D_{j}^*}}}{{{M_j}m}}} \right) ^{ - 2/{\alpha _j}}}{y^2}\), then

$$\begin{aligned}&{\mathcal{L}}_{I_j}(x^{\alpha _i}{{({P_i}{M_i}m)}^{ - 1}}\tau ) \nonumber \\&\quad =\exp \left\{ { - \pi {\lambda _j}{{\left( {\widehat{{P_j}}\tau \frac{{{D_{j}^*}}}{{{M_j}m}}} \right) }^{2/{\alpha _j}}} {x^{2/\widehat{{\alpha _j}}}} \int _{m'}^\infty {\frac{1}{{1 + {u^{{\alpha _j}/2}}}}du} } \right\} \nonumber \\&\quad = \exp \left\{ - \pi {\lambda _j}{\left( {\widehat{P_j}\frac{{{D_{j}^*}}}{{{M_j}m}}} \right) ^{2/{\alpha _j}}}{x^{2/\widehat{\alpha _j}}}Z(\tau ,{\alpha _j},\widehat{B_j}) \right\} , \end{aligned}$$
(34)

where

$$\begin{aligned} Z(\tau ,{\alpha _j},\widehat{{B_j}}) = {\tau ^{2/{\alpha _j}}}\int _{m'}^\infty {\frac{1}{{1 + {u^{{\alpha _j}/2}}}}du}. \end{aligned}$$
(35)

Taking (34) into (31), we have

$$\begin{aligned}&{\mathbb {P}} [{\gamma _i}(x) > \tau ] \nonumber \\&\quad = \exp \left\{ { \frac{- \tau }{\text{ SNR }} - \pi \sum \limits _{j = 1}^K \omega _{ij} {{\lambda _j}} {{\left( {\widehat{{P_j}}\frac{{{D_{j}^*}}}{{{M_j}m}}} \right) } ^{2/{\alpha _j}}} {x^{2/\widehat{{\alpha _j}}}}Z(\tau ,{\alpha _j},\widehat{{B_j}})} \right\} . \end{aligned}$$
(36)

Combining (36) and (30), the outage probability of a layer can be obtained from (13). Moreover, by taking (13) into (11), the outage probability of the network can be got from (14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Li, B., Zuo, X. et al. Performance analysis for 5G beamforming heterogeneous networks. Wireless Netw 26, 463–477 (2020). https://doi.org/10.1007/s11276-018-1846-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1846-5

Keywords

Navigation