A Time Quanta Bit coding method


This paper discusses a new method of coding and/or decoding data for wireless transmission, particularly for radio transmitted data, and examines the equipment needed for the actual implementation of the technique. The authors describe in detail the principle of the proposed approach, including possible benefits of its implementation in wireless sensor networks, and compare the given concept with the most widely used Manchester coding method. When implemented, the Time Quanta Bit coding method increases the communication range and shortens the necessary transmission time, which, in the case of battery-operated devices as a typical representative of the wireless sensor node, allows for longer operation time. The described technique can significantly improve the quality of wireless communication in small wireless sensor networks where the communication is based on infrequent small packet transfers; such target applications then include, for example, home and office automation wireless sensor networks, safety systems, street lighting, industrial manufacturing and management, and telemetry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Akyildiz, F., Weilian, S., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine,40, 102–114.

    Article  Google Scholar 

  2. 2.

    Akyildiz, F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks,47, 445–487.

    Article  Google Scholar 

  3. 3.

    Taherkordi, A., Taleghan, A., & Sharifi, M. (2006). Dependability considerations in wireless sensor networks applications. Journal of Networks,1, 28–35.

    Article  Google Scholar 

  4. 4.

    Memon, I., Chen, L., Majid, A., Lv, M., Hussain, I., & Chen, G. (2015). Travel recommendation using geo-tagged photos in social media for tourist. Wireless Personal Communications,80(4), 1347–1382.

    Article  Google Scholar 

  5. 5.

    Memon, M. H., Li, J. P., Memon, I., & Arain, Q. A. (2017). GEO matching regions: Multiple regions of interest using content based image retrieval based on relative locations. Multimedia Tools and Applications,76(14), 15377–15411.

    Article  Google Scholar 

  6. 6.

    Tang, B., Yiu, M. L., & Hua, K. A. (2016). Exploit every bit: Effective caching for high-dimensional nearest neighbor search. IEEE Transactions on Knowledge and Data Engineering,28(5), 1175–1888.

    Article  Google Scholar 

  7. 7.

    Sui, Y., & Xue, J. (2016). SVF: Interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th international conference on compiler construction (pp. 265–266).

  8. 8.

    Memon, I., Hussain, I., Akhtar, R., & Chen, G. (2015). Enhanced privacy and authentication: An efficient and secure anonymous communication for location based service using asymmetric cryptography scheme. Wireless Personal Communications,84(2), 1487–1508.

    Article  Google Scholar 

  9. 9.

    Memon, I., & Arain, Q. A. (2017). Dynamic path privacy protection framework for continuous query service over road networks. World Wide Web,20(4), 639–672.

    Article  Google Scholar 

  10. 10.

    Memon, I., Ali, Q., Zubedi, A., & Mangi, F. A. (2017). DPMM: Dynamic pseudonym-based multiple mix-zones generation for mobile traveler. Multimedia Tools and Applications,76(22), 24359–24388.

    Article  Google Scholar 

  11. 11.

    Domenic, M. K., Wang, Y., Zhang, F., Memon, I., & Gustav, Y. H. (2013). Preserving users’ privacy for continuous query services in road networks. In 6th International conference on information management, innovation management and industrial engineering (pp 352–355).

  12. 12.

    Memon, I. (2015). A secure and efficient communication scheme with authenticated key establishment protocol for road networks. Wireless Personal Communications,85(3), 1167–1191.

    Article  Google Scholar 

  13. 13.

    Arain, Q. A., Zhongliang, D., Memon, I., Arain, S., Shaikh, F. K., Zubedi, A., et al. (2017). Privacy preserving dynamic pseudonym-based multiple mix-zones authentication protocol over road networks. Wireless Personal Communications,95(2), 505–521.

    Article  Google Scholar 

  14. 14.

    Arain, Q. A., Uqaili, M. A., Deng, Z., Memon, I., Jiao, J., Shaikh, M. A., et al. (2017). Clustering based energy efficient and communication protocol for multiple mix-zones over road networks. Wireless Personal Communications,95(2), 411–428.

    Article  Google Scholar 

  15. 15.

    Akhtar, R., Amin, N. U., Memon, I., & Shah, M. (2013). Implementation of secure AODV in MANET. In Proceedings of SPIEThe international society for optical engineering (Vol. 8768).

  16. 16.

    Xu, L. J., Chen, J. J., Cao, Z., Liu, X. B., & Hu, J. H. (2014). Manchester code telemetry system for well logging using quasi-parallel inductive-capacitive resonance. Review of Scientific Instruments,85(7), 074704.

    Article  Google Scholar 

  17. 17.

    Von Wendorff, W. C. (2001). Method and device for digitally coding binary data with a particular transmit signal spectrum. USA Patent US6509849 B2, 5 July 2001.

  18. 18.

    Saburo, T., & Akifumi, I. (1985). Method and apparatus for producing a binary information for an information transmission. Patent US4523181.

  19. 19.

    Crandall, D., Hessel, S. R., Hornak, T., Nordby, R., Springer, K. H., & Corsetto, C. (1991). DC-free line code for arbitrary data transmission. USA Patent US5022051 A, 2 November 1991.

  20. 20.

    Runsheng, H., & Kok-Wui, C. (2005). Methods, software, circuits and systems for coding information. USA Patent US6956510 B1, 18 October 2005.

  21. 21.

    Owen, R. C. (1968). Systems for transmitting code pulses having low cumulative displarity. USA Patent US3405235 A, 8 October 1968.

  22. 22.

    Crockett, L. H., MacEwen, N. C., Pfann, E., & Stewart, R. W. (2005). Pulse shaping for RF communications in wireless sensor networks. In Conference record of the thirty-ninth asilomar conference on signals, systems and computers (pp. 442–446).

  23. 23.

    Seleym, A. (2013). A new non-coherent pulse compression based on binary codes for on-off keying (NCPC-BC-OOK). In 20th International conference on electronics, circuits, and systems (ICECS) (pp. 731–734).

  24. 24.

    Dermicol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine,44, 115–121.

    Google Scholar 

  25. 25.

    Wei, Y., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. proceedings.

  26. 26.

    Heinzelman, R. W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences.

  27. 27.

    Chen, Y. P., Liestman, A. L., & Jiangchuan, L. (2005). Energy-efficient data aggregation hierarchy for wireless sensor networks. In Second international conference on quality of service in heterogeneous wired/wireless networks.

  28. 28.

    Enz, C., El-Hoiydi, A., Decotignie, J. D., & Peiris, V. (2004). WiseNET: An ultralow-power wireless sensor network solution. IEEE Computer,8, 62–70.

    Article  Google Scholar 

  29. 29.

    Ghosh, R., Sinha, K., Datta, D., & Sinha, B. P. (2008). TSS: An energy efficient communication scheme for low power wireless networks. In Performance, computing and communications conference (pp. 85–92).

  30. 30.

    Li, S. Y.-R., Yeung, R. W., & Ning, C. (2003). Linear network coding. IEEE Transactions on Information Theory,2, 371–381.

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zhang, S., Liew, S. C., & Lam, P. P. (2006). Hot topic: Physical-layer network coding. In Proceedings of the 12th annual international conference on mobile computing and networking MobiCom ‘06 (pp. 358–365).

  32. 32.

    Šulc, V. (2007). Method of coding and/or decoding binary data for wireless transmission, particularly for radio transmitted data, and equipment for implementing this method. USA Patent US7167111 B2, 23 January 2007.

  33. 33.

    Eunmo, K. (2014). Apparatus and method of receiver architecture and low-complexity decoder for line-coded and amplitude-modulated signal. USA Patent US20140086347 A1, 24 March 2014.

Download references


Research described in this paper was financed by Czech Ministry of Education in frame of National Sustainability Program under Grant LO1401. For research, infrastructure of the SIX Center was used.

Author information



Corresponding author

Correspondence to Jaroslav Kadlec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šulc, V., Kuchta, R., Kadlec, J. et al. A Time Quanta Bit coding method. Wireless Netw 26, 325–332 (2020). https://doi.org/10.1007/s11276-018-1814-0

Download citation


  • Wireless communication
  • Bit-coding
  • Wireless network coding
  • RF transmission channel
  • RF physical layer