Advertisement

Neural network based instant parameter prediction for wireless sensor network optimization models

  • Ayhan Akbas
  • Huseyin Ugur Yildiz
  • Ahmet Murat Ozbayoglu
  • Bulent Tavli
Article
  • 190 Downloads

Abstract

Optimal operation configuration of a Wireless Sensor Network (WSN) can be determined by utilizing exact mathematical programming techniques such as Mixed Integer Programming (MIP). However, computational complexities of such techniques are high. As a remedy, learning algorithms such as Neural Networks (NNs) can be utilized to predict the WSN settings with high accuracy with much lower computational cost than the MIP solutions. We focus on predicting network lifetime, transmission power level, and internode distance which are interrelated WSN parameters and are vital for optimal WSN operation. To facilitate an efficient solution for predicting these parameters without explicit optimizations, we built NN based models employing data obtained from an MIP model. The NN based scalable prediction model yields a maximum of 3% error for lifetime, 6% for transmission power level error, and internode distances within an accuracy of 3 m in prediction outcomes.

Keywords

Wireless sensor networks Neural networks Multi-layer perceptron Backpropagation Maximum lifetime Lifetime prediction Transmission power level Internode distance 

References

  1. 1.
    Ahad, N., Qadir, J., & Ahsan, N. (2016). Neural networks in wireless networks: Techniques, applications and guidelines. Journal of Network and Computer Applications, 68, 1–27.CrossRefGoogle Scholar
  2. 2.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRefGoogle Scholar
  3. 3.
    Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys Tutorials, 16(4), 1996–2018.CrossRefGoogle Scholar
  4. 4.
    Alwadi, M. A. (2015). Energy efficient wireless sensor networks based on machine learning. Ph.D. thesis, University of CanberraGoogle Scholar
  5. 5.
    Aram, S., Mesin, L., Pasero, E. (2014). Improving lifetime in wireless sensor networks using neural data prediction. In Proceedings of world symposium on computer applications & research (WSCAR) (pp. 4–6).Google Scholar
  6. 6.
    Baesens, B., Gestel, T. V., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627–635.CrossRefzbMATHGoogle Scholar
  7. 7.
    Bai, X., Liu, L., Cao, M., Panneerselvam, J., Sun, Q., & Wang, H. (2017). Collaborative actuation of wireless sensor and actuator networks for the agriculture industry. IEEE Access, 5, 13286–13296.CrossRefGoogle Scholar
  8. 8.
    Barve, Y. D. (2009). Neural network approach to the prediction of percentage data packet loss for wireless sensor networks. In Proceedings of southeastern symposium on system theory (pp. 103–106).Google Scholar
  9. 9.
    Bhatia, T., Kansal, S., Goel, S., & Verma, A. (2016). A genetic algorithm based distance-aware routing protocol for wireless sensor networks. Computers & Electrical Engineering, 56, 441–455.CrossRefGoogle Scholar
  10. 10.
    Blue, J., Candela, G., Grother, P., Chellappa, R., & Wilson, C. (1994). Evaluation of pattern classifiers for fingerprint and ocr applications. Pattern Recognition, 27(4), 485–501.CrossRefGoogle Scholar
  11. 11.
    Cao, J., Ahmadi, M., & Shridhar, M. (1997). A hierarchical neural network architecture for handwritten numeral recognition. Pattern Recognition, 30(2), 289–294.CrossRefGoogle Scholar
  12. 12.
    Chen, L. S., Liu, C. H., & Chiu, H. J. (2011). A neural network based approach for sentiment classification in the blogosphere. Journal of Informetrics, 5(2), 313–322.CrossRefGoogle Scholar
  13. 13.
    Chincoli, M., den Boef, P., & Liotta, A. (2017). Cognitive channel selection for wireless sensor communications. In Proceedings of IEEE international conference on networking, sensing and control (ICNSC) (pp. 795–800).Google Scholar
  14. 14.
    El-Hoiydi, A., & Decotignie, J. D. (2004). WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In S. E. Nikoletseas & J. D. P. Rolim (Eds.), Algorithmic aspects of wireless sensor networks. ALGOSENSORS 2004. Lecture Notes in Computer Science (Vol. 3121). Berlin, Heidelberg: Springer.Google Scholar
  15. 15.
    Enami, N., Moghadam, R. A., & Haghighat, A. (2010). A survey on application of neural networks in energy conservation of wireless sensor networks. In Proceedings of international conference on recent trends in wireless and mobile networks (WiMo) (pp. 283–294).Google Scholar
  16. 16.
    GAMS Development Corporation. (2013). General algebraic modeling system (GAMS) release 24.2.1. Washington, DC, USA. http://www.gams.com/. Accessed 01 Mar 2017.
  17. 17.
    Gao, T., Chen, M., Gu, H., & Yin, C. (2017). Reinforcement learning based resource allocation in cache-enabled small cell networks with mobile users. In Proceedings IEEE/CIC international conference on communications in China (ICCC) (pp. 1–6).Google Scholar
  18. 18.
    Gharghan, S. K., Nordin, R., Ismail, M., & Ali, J. A. (2016). Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling. IEEE Sensors Journal, 16(2), 529–541.CrossRefGoogle Scholar
  19. 19.
    Guo, L., Chen, F., Dai, Z., & Liu, Z. (2010). WSN cluster head selection algorithm based on neural network. In Proceedings of international conference on machine vision and human–machine interface (pp. 258–260).Google Scholar
  20. 20.
    Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications, 38, 185–201.CrossRefGoogle Scholar
  21. 21.
    Haykin, S. (1998). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar
  22. 22.
    He, Y., Zhang, Z., Yu, F. R., Zhao, N., Yin, H., Leung, V. C. M., et al. (2017). Deep-reinforcement-learning-based optimization for cache-enabled opportunistic interference alignment wireless networks. IEEE Transactions on Vehicular Technology, 66(11), 10433–10445.CrossRefGoogle Scholar
  23. 23.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  24. 24.
    Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K. C., & Hanzo, L. (2017). Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105.CrossRefGoogle Scholar
  25. 25.
    Karakaya, M., & Sevinç, E. (2017). An efficient genetic algorithm for routing multiple uavs under flight range and service time window constraints. Bilişim Teknolojileri Dergisi, 10(1), 113.Google Scholar
  26. 26.
    Kaswan, A., Singh, V., & Jana, P. K. (2018). A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Pervasive and Mobile Computing, 46, 122–136.CrossRefGoogle Scholar
  27. 27.
    Kocer, H. E., & Cevik, K. K. (2011). Artificial neural networks based vehicle license plate recognition. Procedia Computer Science, 3, 1033–1037.CrossRefGoogle Scholar
  28. 28.
    Kulin, M., Fortuna, C., De Poorter, E., Deschrijver, D., & Moerman, I. (2016). Data-driven design of intelligent wireless networks: An overview and tutorial. Sensors, 16(6), 790.CrossRefGoogle Scholar
  29. 29.
    Kulin, M., Kazaz, T., Moerman, I., & Poorter, E. D. (2018). End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access, 6, 18484–18501.CrossRefGoogle Scholar
  30. 30.
    Kulin, M., de Poorter, E., Kazaz, T., & Moerman, I. (2017). Poster: Towards a cognitive MAC layer—Predicting the MAC-level performance in dynamic WSN using machine learning. In Proceedings of international conference on embedded wireless systems and networks (pp. 214–215).Google Scholar
  31. 31.
    Kuzborskij, I., Gijsberts, A., & Caputo, B. (2012). On the challenge of classifying 52 hand movements from surface electromyography. In 2012 annual international conference of the IEEE engineering in medicine and biology society (pp. 4931–4937).Google Scholar
  32. 32.
    Laganà, M., Glaropoulos, I., Fodor, V., & Petrioli, C. (2012). Modeling and estimation of partially observed wlan activity for cognitive WSNs. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1526–1531).Google Scholar
  33. 33.
    Li, H., Gao, H., Lv, T., & Lu, Y. (2018). Deep q-learning based dynamic resource allocation for self-powered ultra-dense networks. In Proceedings of IEEE international conference on communications workshops (ICC Workshops) (pp. 1–6).Google Scholar
  34. 34.
    Li, J., & Liu, D. (2016). An energy aware distributed clustering routing protocol for energy harvesting wireless sensor networks. In Proceedings of IEEE/CIC international conference on communications in China (ICCC) (pp. 1–6).Google Scholar
  35. 35.
    Liu, T., & Cerpa, A. E. (2014). Data-driven link quality prediction using link features. ACM Transactions on Sensor Networks, 10(2), 37:1–37:35.CrossRefGoogle Scholar
  36. 36.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for eeg-based brain–computer interfaces. Journal of Neural Engineering, 4(2), R1.CrossRefGoogle Scholar
  37. 37.
    Ma, Y., Peng, M., Xue, W., & Ji, X. (2013). A dynamic affinity propagation clustering algorithm for cell outage detection in self-healing networks. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 2266–2270).Google Scholar
  38. 38.
    Mao, Q., Hu, F., Hao, Q. (2018). Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys Tutorials.  https://doi.org/10.1109/COMST.2018.2846401
  39. 39.
    Martinez-Sala, A. S., Pardo, J. M. M. G., Egea-Lopez, E., Vales-Alonso, J., Juan-Llacer, L., & Garcia-Haro, J. (2005). An accurate radio channel model for wireless sensor networks simulation. Journal of Communications and Networks, 7(4), 401–407.CrossRefGoogle Scholar
  40. 40.
    McDanel, B., Teerapittayanon, S., & Kung, H. (2017). Embedded binarized neural networks. In Proceedings of international conference on embedded wireless systems and networks (EWSN) (pp. 168–173), Junction Publishing.Google Scholar
  41. 41.
    Mishra, A., Chakraborty, S., Li, H., & Agrawal, D. P. (2014). Error minimization and energy conservation by predicting data in wireless body sensor networks using artificial neural network and analysis of error. In Proceedings of consumer communications and networking conference (CCNC) (pp. 177–182).Google Scholar
  42. 42.
    Nie, L., Jiang, D., Yu, S., & Song, H. (2017). Network traffic prediction based on deep belief network in wireless mesh backbone networks. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1–5).Google Scholar
  43. 43.
    Ortiz, A., Al-Shatri, H., Li, X., Weber, T., & Klein, A. (2016). Reinforcement learning for energy harvesting point-to-point communications. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–6).Google Scholar
  44. 44.
    Ozbayoglu, A. M., & Yuksel, H. E. (2012). Analysis of gas–liquid behavior in eccentric horizontal annuli with image processing and artificial intelligence techniques. Journal of Petroleum Science and Engineering, 81, 31–40.CrossRefGoogle Scholar
  45. 45.
    Pal, V., Singh, Y. G., & Yadav, R. (2015). Cluster head selection optimization based on genetic algorithm to prolong lifetime of wireless sensor networks. Procedia Computer Science, 57, 1417–1423.CrossRefGoogle Scholar
  46. 46.
    Payal, A., Rai, C. S., & Reddy, B. V. R. (2014). Artificial neural networks for developing localization framework in wireless sensor networks. In Proceedings of international conference on data mining and intelligent computing (ICDMIC) (pp. 1–6).Google Scholar
  47. 47.
    Peng, S., Jiang, H., Wang, H., Alwageed, H., & Yao, Y. D. (2017). Modulation classification using convolutional neural network based deep learning model. In Proceedings of wireless and optical communication conference (WOCC) (pp. 1–5).Google Scholar
  48. 48.
    Pinto, A., Montez, C., Araújo, G., Vasques, F., & Portugal, P. (2014). An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Information Fusion, 15, 90–101.CrossRefGoogle Scholar
  49. 49.
    Qiu, M., Song, Y., & Akagi, F. (2016). Application of artificial neural network for the prediction of stock market returns: The case of the japanese stock market. Chaos, Solitons & Fractals, 85, 1–7.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Qiulan, W., Xia, G., Yong, L., & Hongli, X. (2013). Research on multi-sensor data fusion algorithm of soil carbon sink factors based on neural network. In Proceedings of international conference on mechatronic sciences, electric engineering and computer (MEC) (pp. 637–641).Google Scholar
  51. 51.
    Rahat, A. A., Everson, R. M., & Fieldsend, J. E. (2016). Evolutionary multi-path routing for network lifetime and robustness in wireless sensor networks. Ad Hoc Networks, 52, 130–145.CrossRefGoogle Scholar
  52. 52.
    Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., & Pollin, S. (2018). Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Transactions on Cognitive Communications and Networking.Google Scholar
  53. 53.
    Rana, S. P., Dey, M., Siddiqui, H. U., Tiberi, G., Ghavami, M., & Dudley, S. (2017). UWB localization employing supervised learning method. In Proceedings of IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5).Google Scholar
  54. 54.
    Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations of back-propagation errors. Nature, 323, 533–536.CrossRefzbMATHGoogle Scholar
  55. 55.
    Sabitha, R., Bhuma, K., & Thyagarajan, T. (2017). Transmission power control using state estimation-based received signal strength prediction for energy efficiency in wireless sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences, 25(1), 591–604.CrossRefGoogle Scholar
  56. 56.
    Sarikan, S., Ozbayoglu, A., & Zilci, O. (2017). Automated vehicle classification with image processing and computational intelligence. Procedia Computer Science, 114, 515–522.CrossRefGoogle Scholar
  57. 57.
    Serin, G., Gudelek, U., Ozbayoglu, A., & Unver, H. (2017). Estimation of parameters for the free-form machining with deep neural network. In Proceedings of IEEE international conference on big data (pp. 2102–2111). IEEE.Google Scholar
  58. 58.
    Sezer, O., Ozbayoglu, A., & Dogdu, E. (2017). An artificial neural network-based stock trading system using technical analysis and big data framework. In ACM southeast conference (pp. 223–226). ACM.Google Scholar
  59. 59.
    Sha, M., Dor, R., Hackmann, G., Lu, C., Kim, T. S., & Park, T. (2013). Self-adapting MAC layer for wireless sensor networks. In Proceedings of IEEE real-time systems symposium (pp. 192–201).Google Scholar
  60. 60.
    Shahamiri, S. R., & Salim, S. S. B. (2014). Real-time frequency-based noise-robust automatic speech recognition using multi-nets artificial neural networks: A multi-views multi-learners approach. Neurocomputing, 129, 199–207.CrossRefGoogle Scholar
  61. 61.
    Singh, P., & Agrawal, S. (2013). Node localization in wireless sensor networks using the M5P tree and SMOreg algorithms. In Proceedings of international conference on computational intelligence and communication networks (pp. 104–104).Google Scholar
  62. 62.
    Singh, P., & Agrawal, S. (2013). TDOA based node localization in WSN using neural networks. In Proceedings of international conference on communication systems and network technologies (pp. 400–404).Google Scholar
  63. 63.
    Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 32, 323–332.CrossRefGoogle Scholar
  64. 64.
    Subha, C. P., Malarkan, S., & Vaithinathan, K. (2013). A survey on energy efficient neural network based clustering models in wireless sensor networks. In Proceedings of international conference on emerging trends in VLSI, embedded system, nano electronics and telecommunication system (ICEVENT) (pp. 1–6).Google Scholar
  65. 65.
    Sun, H., Chen, X., Shi, Q., Hong, M., Fu, X., & Sidiropoulos, N. D. (2017). Learning to optimize: Training deep neural networks for wireless resource management. In Proceedings of IEEE international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–6).Google Scholar
  66. 66.
    Sun, W., Lu, W., Li, Q., Chen, L., Mu, D., & Yuan, X. (2017). WNN-LQE: Wavelet-neural-network-based link quality estimation for smart grid WSNs. IEEE Access, 5, 12788–12797.CrossRefGoogle Scholar
  67. 67.
    The MathWorks Inc.: MATLAB neural networks toolbox release 2017b. Natick, Massachusetts, United States (2017). https://www.mathworks.com/products/neural-network.html. Accessed 01 Mar 2017.
  68. 68.
    Valadarsky, A., Schapira, M., Shahaf, D., & Tamar, A. (2017). A machine learning approach to routing. CoRR arxiv: abs/1708.03074.
  69. 69.
    Wolsey, L. (1998). Integer programming. Hoboken: Wiley.zbMATHGoogle Scholar
  70. 70.
    Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys Tutorials, 19(2), 828–854.CrossRefGoogle Scholar
  71. 71.
    Yildiz, H. U., Tavli, B., & Yanikomeroglu, H. (2015). Transmission power control for link-level handshaking in wireless sensor networks. IEEE Sensors Journal, 16, 561–576.CrossRefGoogle Scholar
  72. 72.
    Yoon, S., & Shahabi, C. (2007). The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Transactions on Sensor Networks, 3(1), 3.CrossRefGoogle Scholar
  73. 73.
    Yue, H., & Xuedong, G. (2014). Clustering on heterogeneous networks. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(3), 213–233.Google Scholar
  74. 74.
    Zhang, R. (2010). On active learning and supervised transmission of spectrum sharing based cognitive radios by exploiting hidden primary radio feedback. IEEE Transactions on Communications, 58(10), 2960–2970.CrossRefGoogle Scholar
  75. 75.
    Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). pTUNES: Runtime parameter adaptation for low-power MAC protocols. In Proceedings of ACM/IEEE international conference on information processing in sensor networks (IPSN) (pp. 173–184).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringUniversity of Turkish Aeronautical AssociationAnkaraTurkey
  2. 2.Department of Electrical and Electronics EngineeringTED UniversityAnkaraTurkey
  3. 3.Department of Computer EngineeringTOBB University of Economics and TechnologyAnkaraTurkey
  4. 4.Department of Electrical and Electronics EngineeringTOBB University of Economics and TechnologyAnkaraTurkey

Personalised recommendations