SDN assisted self organizing network architecture for multi-RAT networks and mobility prediction

  • Dibakar Das
  • Jyotsna Bapat
  • Debabrata Das


Existing and future wireless networks are expected to have multiple Radio Access Technologies (RAT), primarily due to legacy reasons and introduction of newer technologies. However, new technologies, e.g., Self Organizing Networks (SON), tend to focus only on future generations networks, ignoring the existing benefits provided by legacy systems. The motivation behind this work is that, with minimal changes newer functionalities can be extended to legacy systems as well. This paper proposes an Software Defined Networking assisted SON architecture for multi-RAT cellular networks. Using this architecture, a multi-RAT Automatic Neighbour Relation functionality of SON is constructed, and the same can be used to predict mobility of User Equipments (UEs) to a cell. This mobility aspect is modeled using random graphs, and a Mixed Integer Non-Linear Programming problem is formulated, to maximize probability of mobility of UEs to a cell. It is observed that the problem is non-convex and also NP-Hard. Subsequently, a Particle Swarm Optimization (PSO) approach is developed to solve this problem. Results show that PSO output matches with that of exhaustive search for finding the maximum value of UE mobility probability to a cell, thus validating the solution approach. Results also reveal, compatibility of QoS parameters (required by UEs) among source and target cells, increases mobility probability. However, higher arrival rate of UEs towards a cell decreases the same, within target cell capacity limits. Subsequently, implications of UE mobility probability on core SON functionalities, such as load balancing and mobility optimization, are studied.


Multi-RAT SDN SON Mobility Random graph Particle Swarm Optimization 



Funding was provided by Ministry of Electronics and Information Technology (MeitY), Govt. of India and Cognizant Technologies Ltd., for COPAS project.


  1. 1.
    Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35. Scholar
  2. 2.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32, 1065–1082. Scholar
  3. 3.
  4. 4.
    Aeris Communications, Inc. 2G, 3G, 4G ... OMG! WHAT ‘G’ is right for IOT/M2M?Google Scholar
  5. 5.
    Poulios, G., Tsagkaris, K., Demestichas, P., Tall, A., Altman, Z., & Destré, C. (2014). Autonomics and SDN for self-organizing networks. In 2014 11th international symposium on wireless communications systems (ISWCS) (pp. 830–835).
  6. 6.
    Tsagkaris, K., Poulios, G., Demestichas, P., Tall, A., Altman, Z., & Destré, C. (2015). An open framework for programmable, self-managed radio access networks. IEEE Communications Magazine, 53(7), 154–161. Scholar
  7. 7.
    Costanzo, S., Galluccio, L., Morabito, G., & Palazzo, S. (2012). Software defined wireless networks: Unbridling SDNs. In Proceedings of the 2012 European workshop on software defined networking, EWSDN ’12 (pp. 1–6). Washington, DC: IEEE Computer Society.
  8. 8.
    Yap, K., Sherwood, R., Kobayashi, M., Huang, T.-Y., Chan, M., Handigol, N., et al. (2010). Blueprint for introducing innovation into wireless mobile networks. In Proceedings of the second ACM SIGCOMM workshop on virtualized infrastructure systems and architectures, VISA ’10 (pp. 25–32). New York, NY: ACM.
  9. 9.
    Li, L., Mao, Z., & Rexford, J. (2012). Toward software-defined cellular networks. In Proceedings of the 2012 European workshop on software defined networking (pp. 7–12).
  10. 10.
    Suresh, L., Schulz-Zander, J., Merz, R., Feldmann, A., & Vazao, T. (2012). Towards programmable enterprise WLANS with Odin. In Proceedings of the first workshop on hot topics in software defined networks, HotSDN ’12 (pp. 115–120). New York, NY: ACM.
  11. 11.
    Jin, X., Li, L. E., Vanbever, L., & Rexford, J. (2013). SoftCell: Scalable and flexible cellular core network architecture. In Proceedings of the ninth ACM conference on emerging networking experiments and technologies, CoNEXT ’13 (pp. 163–174). New York, NY: ACM.
  12. 12.
    Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking (pp. 25–30).
  13. 13.
    Pentikousis, K., Wang, Y., & Hu, W. (2013). Mobileflow: Toward software defined mobile networks. IEEE Communications Magazine, 51, 44–53. Scholar
  14. 14.
    Bernardos, C. J., Oliva, A. D. L., Serrano, P., Banchs, A., Contreras, L. M., Jin, H., et al. (2014). An architecture for software defined wireless networking. IEEE Wireless Communications, 21, 52–61. Scholar
  15. 15.
    Yap, K.-K., Kobayashi, M., Sherwood, R., Huang, T.-Y., Chan, M., Handigol, N., et al. (2010). OpenRoads: Empowering research in mobile networks. ACM SIGCOMM Computer Communication Review, 40(1), 125–126. Scholar
  16. 16.
    Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the first workshop on hot topics in software defined networks, HotSDN’12 (pp. 109–114).
  17. 17.
    Ishii, H., Kishiyama, Y., & Takahashi, H. (2012). A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In 2012 IEEE Globecom workshops (pp. 624–630).
  18. 18.
    Zhou, S., Zhao, T., Niu, Z., & Zhou, S. (2016). Software-defined hyper-cellular architecture for green and elastic wireless access. IEEE Communications Magazine, 54, 12–19. Scholar
  19. 19.
    Zaidi, Z., Friderikos, V., & Imran, M. A. (2015). Future RAN architecture: SD-RAN through a general-purpose processing platform. IEEE Vehicular Technology Magazine, 10(1), 52–60. Scholar
  20. 20.
    Duan, X., Akhtar, A. M., & Wang, X. (2015). Software-defined networking based resource management: Data offloading with load balancing in 5G HetNet. EURASIP Journal on Wireless Communications and Networking, 2015(181), 1–13. Scholar
  21. 21.
    Sun, S., Kadoch, M., Gong, L., & Rong, B. (2015). Integrating network function virtualization with SDR and SDN for 4G/5G networks. IEEE Network, 29, 54–59. Scholar
  22. 22.
    Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys Tutorials, 16(3), 1617–1634. Scholar
  23. 23.
    Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: An intellectual history of programmable networks. SIGCOMM Computer Communication Review, 44(2), 87–98. Scholar
  24. 24.
    Jagadeesan, N. A., & Krishnamachari, B. (2015). Software-defined networking paradigms in wireless networks: A survey. ACM Computing Surveys, 47, 1–11. Scholar
  25. 25.
    Ramirez-Perez, C., & Ramos, V. (2016). SDN meets SDR in self-organizing networks: fitting the pieces of network management. IEEE Communications Magazine, 54(1), 48–57. Scholar
  26. 26.
    Yahia, I. G. B., Destré, C., & Quenot, A. (2014). Scenarios for eNodeB and SON functions programmability. In 2014 IEEE wireless communications and networking conference workshops (WCNCW) (pp. 208–212).
  27. 27.
    Aliu, O. G., Imran, A., Imran, M. A., & Evans, B. (2013). A survey of self organisation in future cellular networks. IEEE Communications Surveys Tutorials, 15(1), 336–361. Scholar
  28. 28.
    3GPP. Automatic Neighbour Relation (ANR) for UTRAN. 3GPP TS 25.484 V12.0.0 (2014-09).Google Scholar
  29. 29.
    Reverb Networks. Multi-Radio Access Technology (RAT) Self-Optimizing Networks. White paper.Google Scholar
  30. 30.
    NGMN. NGMN recommendation on SON and O&M requirements. Accessed 25 June 2018.
  31. 31.
    UlHaq, I., Shafiq, A., Yahya, K. M., & Iqbal, M. N. (2010). Cell breathing and cell capacity in CDMA: Algorithm & evaluation. In 2010 7th international symposium on communication systems, networks digital signal processing (CSNDSP 2010) (pp. 432–436).Google Scholar
  32. 32.
    Zhao, X., Zhang, W., & Wang, C. (2013). A load prediction based virtual cell breathing scheme for LTE-A system. In MILCOM 2013—2013 IEEE military communications conference (pp. 1296–1301).
  33. 33.
    Alcatel-Lucent. OAM Convergence in Wireless Networks. Application Note.Google Scholar
  34. 34.
    Amanna, A., & Reed, J. H. (2010). Survey of cognitive radio architectures. In Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon) (pp. 292–297).
  35. 35.
    Hahn, S., Rose, D. M., & Kurner, T. Mobility load balancing a case study: Simplified vs. realistic scenarios. Accessed 25 June 2018.Google Scholar
  36. 36.
    Awada, A., Wegmann, B., Viering, I., & Klein, A. (2011). Optimizing the radio network parameters of the long term evolution system using Taguchi’s method. IEEE Transactions on Vehicular Technology, 60(8), 3825–3839. Scholar
  37. 37.
    Haas, R., & Meixner, O. An illustrated guide to the analytic hierarchy process. Accessed 25 June 2018.Google Scholar
  38. 38.
    California State University, Fullerton. Power method. Accessed 25 June 2018.
  39. 39.
    Birand, B., Zafer, M., Zussman, G., & Lee, K. W. (2011). Dynamic graph properties of mobile networks under Levy walk mobility. In 2011 IEEE eighth international conference on mobile ad-hoc and sensor systems (pp. 292–301).
  40. 40.
    Díaz, J., Mitsche, D., & Santi, P. (2011). Theoretical aspects of graph models for MANETs (pp. 161–190). Berlin: Springer. Scholar
  41. 41.
    Bai, F., & Helmy, A. (2006). A survey of mobility modeling and analysis in wireless adhoc networks. In Wireless ad hoc and sensor networks. Springer. Accessed 25 June 2018.Google Scholar
  42. 42.
    Kannan, R., & Monma, C. L. (1978). On the computational complexity of integer programming problems (pp. 161–172). Berlin: Springer. Scholar
  43. 43.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013). Mixed-integer nonlinear optimization. Acta Numerica, 22, 1–131. Scholar
  44. 44.
    Jeroslow, R. C. (1973). There cannot be any algorithm for integer programming with quadratic constraints. Operations Research, 21(1), 221–224. Scholar
  45. 45.
    MINLP Solvers. Accessed 25 June 2018.
  46. 46.
    Engelbrecht, A. P. (2007). Computational intelligence: An introduction. New York, NY: Wiley.CrossRefGoogle Scholar
  47. 47.
    Bartz-Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2004). Analysis of particle swarm optimization using computational statistics. In Chalkis (Ed.), Proceedings of the international conference of numerical analysis and applied mathematics (ICNAAM 2004) (pp. 34–37).Google Scholar
  48. 48.
    Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. Scholar
  49. 49.
    GNU Octave. Accessed 25 June 2018.
  50. 50.
    López-Pérez, D., Ding, M., Claussen, H., & Jafari, A. H. (2015). Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys Tutorials, 17(4), 2078–2101. Scholar
  51. 51.
    Awada, A., Wegmann, B., Rose, D., Viering, I., & Klein, A. (2011). Towards self-organizing mobility robustness optimization in inter-RAT scenario. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5).
  52. 52.
    Shukry, S., & Fahmy, Y. (2016). Mobility robustness self-organizing network handover scheme for LTE-advanced. In 2016 33rd national radio science conference (NRSC) (pp. 300–307).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Institute of Information TechnologyBangaloreIndia

Personalised recommendations