Advertisement

Efficient cooperative ARQ protocols based on relay selection in underwater acoustic communication sensor networks

  • Ali Jamshidi
Article
  • 61 Downloads

Abstract

The characteristics of the underwater acoustic communication such as large propagation delay, high bit error rate and half-duplex, bring challenges to traditional automatic repeat request (ARQ) schemes. In this paper, we propose cooperative ARQ protocols based on relay selection in wireless sensor networks. These protocols use cooperative relays that provide an alternative path along a specific source-to-destination route. This alternative path has higher channel quality than that of the direct source–destination path. The main advantage of our methods is that we do not need to be aware of the relays locations. In fact, the relays will be organized by creating a time table at the destination. Furthermore, we evaluate the proposed schemes by comparing them with conventional stop and wait (S&W) ARQ and some other works in terms of throughput efficiency. Analytical and computer simulation results show that the proposed cooperative retransmission protocols can significantly improve the throughput even in a network with a few cooperative relay nodes.

Keywords

Underwater acoustic sensor networks Cooperative ARQ protocol Throughput analysis Relay selection 

References

  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRefGoogle Scholar
  2. 2.
    Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys and Tutorials, 19(2), 800–827.CrossRefGoogle Scholar
  3. 3.
    Amjad, M., Sharif, M., Khalil Afzal, M., & Won Kim, S. (2016). TinyOS-new trends, comparative views, and supported sensing applications: A review. IEEE Sensors Journal, 16(9), 2865–2889.CrossRefGoogle Scholar
  4. 4.
    Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRefGoogle Scholar
  5. 5.
    Amjad, M., Rehmani, M. H., & Mao, S. (2018). Wireless multimedia cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(2), 1056–1103.CrossRefGoogle Scholar
  6. 6.
    Pramod, H. B., & Kumar, R. (2016). Multilayered energy harvesting and aggregation in underwater sensor acoustic networks for performance enhancement. In International conference on emerging technological trends (ICETT) (pp. 1–4). IEEE.Google Scholar
  7. 7.
    Erdem, H. E., & Cagri Gungor, V. (2017). Lifetime analysis of energy harvesting underwater wireless sensor nodes. In 2017 25th signal processing and communications applications conference (SIU) (pp. 1–4). IEEE.Google Scholar
  8. 8.
    Ghaznavi, M., & Jamshidi, A. (2015). A reliable spectrum sensing method in the presence of malicious sensors in distributed cognitive radio network. IEEE Sensors Journal, 15(3), 1810–1816.Google Scholar
  9. 9.
    Ghaznavi, M., & Jamshidi, A. (2013). Efficient method for reducing the average control bits in a distributed cooperative sensing in cognitive radio system. IET Communications, 7(9), 867–874.CrossRefGoogle Scholar
  10. 10.
    Cui, J.-H., Kong, J., Gerla, M., & Zhou, S. (2006). The challenges of building mobile underwater wireless networks for aquatic applications. Ieee Network, 20(3), 12–18.CrossRefGoogle Scholar
  11. 11.
    Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Elseviers Journal of Ad Hoc Networks, 3(3), 257–279.CrossRefGoogle Scholar
  12. 12.
    Heidemann, J., Ye, W., Wills, J., Syed, A., & Li, Y. (2006). Research challenges and applications for underwater sensor networking. In Proceedings of IEEE WCNC (pp. 228–235).Google Scholar
  13. 13.
    Stojanovic, M. (2005). Optimization of a data link protocol for an underwater acoustic channel. In Europe Oceans 2005 (Vol. 1, pp. 68–73). IEEE.Google Scholar
  14. 14.
    Tomasi, B., et al. (2015). Cross-layer analysis via Markov models of incremental redundancy hybrid ARQ over underwater acoustic channels. Ad Hoc Networks, 34, 62–74.CrossRefGoogle Scholar
  15. 15.
    Tacca, M., Monti, P., & Fumagalli, A. (2007). Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes. IEEE Transactions on Wireless Communications, 6(7), 2519–2529.CrossRefGoogle Scholar
  16. 16.
    Jamshidi, A. (2011). Direct sequence spread spectrum point-to-point communication scheme in underwater acoustic sparse channels. IET Communications, 5(4), 456–466.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Azad, S., Casari, P., Guerra, F., & Zorzi, M. (2011). On ARQ strategies over random access protocols in underwater acoustic networks. In OCEANS 2011 IEEE-Spain (pp. 1–7). IEEE.Google Scholar
  18. 18.
    Kwatra, P. (2013). ARQ protocol studies in underwater communication networks. In 2013 international conference on signal processing and communication (ICSC) (pp. 121–126). IEEE.Google Scholar
  19. 19.
    Azad, S., Casari, P., & Zorzi, M. (2013). The underwater selective repeat error control protocol for multiuser acoustic networks: Design and parameter optimization. IEEE Transactions on Wireless Communications, 12(10), 4866–4877.CrossRefGoogle Scholar
  20. 20.
    Chitre, M., & Soh, W.-S. (2015). Reliable point-to-point underwater acoustic data transfer: To juggle or not to juggle? IEEE Journal of Oceanic Engineering, 40(1), 93–103.CrossRefGoogle Scholar
  21. 21.
    Elyas Babiker, A., Nordin, M., & Zakaria, B. (2011). Energy efficiency analysis of error correction techniques in underwater wireless sensor networks. Journal of Engineering Science and Technology, 6, 17–28.Google Scholar
  22. 22.
    Hara, S., Ogino, A., Okada, M., & Morinaga, N. (1996). Throughput performance of SAW-ARQ protocol with adaptive packet length in mobile packet data transmission. IEEE Transactions on Vehicular Technology, 45, 561–569.CrossRefGoogle Scholar
  23. 23.
    Annamalai, A., & Bhargava, V. (1998). Efficient ARQ error control strategies with adaptive packet length for mobile radio networks. In Proceedings of IEEE international conference on universal personal communications, ICUPC98 (Vol. 2, pp. 1247–1251).Google Scholar
  24. 24.
    Tan, H. P., Seah, W. K. G., & Doyle, L. (2007). A multi-hop ARQ protocol for underwater acoustic networks. In Proceedings of IEEE Oceans Europe (pp. 1–6).Google Scholar
  25. 25.
    Lee, J. W., Kim, J. P., Lee, J. H., Jang, Y. S., Dho, K. C., Son, K., & Cho, H. S. (2008). An improved ARQ scheme in underwater acoustic sensor networks. In Proceedings of MTS/IEEE Oceans08.Google Scholar
  26. 26.
    Lee, J. W., Cheon, J. Y., & Cho, H. S. (2010). A cooperative ARQ scheme in underwater acoustic sensor networks. In Proceedings of IEEE Oceans 2010.Google Scholar
  27. 27.
    Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 34–43.CrossRefGoogle Scholar
  28. 28.
    Lee, J. W., Cheon, J. Y., & Cho, H. S. (2011). A cooperative ARQ scheme for multi-hop underwater acoustic sensor networks. In Proceedings of IEEE Oceans 2011.Google Scholar
  29. 29.
    Mo, H., Mingir, A. C., Alhumyani, H., Albayram, Y., & Cui, J.-H. (2012). UW-HARQ: an underwater hybrid ARQ scheme: design, implementation and initial test. In Proceedings of IEEE OCEANS.Google Scholar
  30. 30.
    Ghosh, A., Lee, J., Cho, H. (2013). Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks. In: SENSORS 2013.Google Scholar
  31. 31.
    Jianghua, Y., Chen, H., Xie, L., & Hong, J. (2014). Performance analysis of hybrid ARQ schemes in underwater acoustic networks. In Proceedings of IEEE OCEANS (pp. 1–6).Google Scholar
  32. 32.
    Zhuang, H., Tan, H.-P., Valera, A., & Bai, Z. (2010). Opportunistic ARQ with bidirectional overhearing for reliable multihop underwater networking. In OCEANS 2010 IEEE-Sydney (pp. 1–6). IEEE.Google Scholar
  33. 33.
    Zhang, Y., Chen, Y., Zhou, S., Xu, X., Shen, X., & Wang, H. (2016). Dynamic node cooperation in an underwater data collection network. IEEE Sensors Journal, 16(11), 4127–4136.CrossRefGoogle Scholar
  34. 34.
    Lin, A., Chen, H., & Xie, L. (2015). Performance analysis of ARQ protocols in multiuser underwater acoustic networks. In OCEANS 2015-MTS/IEEE Washington (pp. 1–6). IEEE.Google Scholar
  35. 35.
    Zhou, Z., Mo, H., Zhu, Y., Peng, Z., Huang, J., & Cui, J.-H. (2012). Fountain code based adaptive multi-hop reliable data transfer for underwater acoustic networks. In 2012 IEEE international conference on communications (ICC) (pp. 6396–6400). IEEE.Google Scholar
  36. 36.
    Urick, R. J. (1983). Principles of underwater sound (3rd ed.). New York: McGraw-Hill.Google Scholar
  37. 37.
    Proakis, J. G. (2006). Digital communications (5th ed.). New York: McGraw-Hill.zbMATHGoogle Scholar
  38. 38.
    Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.Google Scholar
  39. 39.
    Petrioli, C., Petroccia, R., Potter, J. R., & Spaccini, D. (2015). The SUNSET framework for simulation, emulation and at-sea testing of underwater wireless sensor networks. Ad Hoc Networks, 34, 224–238.CrossRefGoogle Scholar
  40. 40.
    Petrioli, C., Petroccia, R. (2012). SUNSET: Simulation, emulation and real-life testing of underwater wireless sensor networks. In Proceedings of IEEE UComms (pp. 12–14).Google Scholar
  41. 41.
    Das, A. P. (2016). Simulation tools for underwater sensor networks: A survey. Network Protocols and Algorithms, 8(4), 41–55.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical and Computer Engineering SchoolShiraz UniversityShirazIran

Personalised recommendations