Skip to main content

Advertisement

Log in

A QoS-aware congestion control mechanism for wireless multimedia sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The amount of data produced by multimedia sensor nodes (such as video/audio sensors), is considerably huge comparing with the data of scalar sensor nodes. The great numbers of data packets have to be forwarded by the network nodes hop by hop to reach the final destination(s). Accordingly, the problem of congestion in wireless multimedia sensor networks (WMSNs) is more serious challenge than in traditional sensor networks. In this paper, a distributed method for congestion control in WMSNs is proposed. A three-level buffer structure is proposed for nodes and the sensing area is divided to the optimized number of zones; a mobile sink along with a coordinator node are employed in each zone. Moreover, the proposed method comprises a novel tree creation procedure. After detection of an occurred congestion, a local binary tree for the congested node is established in the corresponding zone to mitigate the congestion. The next possible congested nodes of the zone use the created tree to send their packets. In the case of the created tree cannot solve the problem of congestion of a zone node with undertaking the quality of multimedia data, the mobile sink of the zone is utilized. The simulation results and comparisons of the proposed method with other works from throughput, consumed energy, delay and SNR points of view, demonstrate the efficiency of the proposed method in mitigating the congestions with keeping the quality of data and service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kumar, A. A., Ovsthus, K., & Kristensen, L. M. (2014). An industrial perspective on wireless sensor networks: a survey of requirements, protocols, and challenges. IEEE Communications Surveys and Tutorials, 16(3), 1391–1412.

    Article  Google Scholar 

  2. Seema, A., & Reisslein, M. (2011). Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a Flexi-WVSNP design. IEEE Communications Surveys and Tutorials, 13(3), 462–486.

    Article  Google Scholar 

  3. Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2017). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems. IEEE Communications Surveys and Tutorials, 19(1), 550–586.

    Article  Google Scholar 

  4. Usman, M., Yang, N., Jan, M. A., He, X., Xu, M., & Lam, K. M. (2017). A joint framework for QoS and QoE for video transmission over wireless multimedia sensor networks. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2017.2739744.

  5. Kader, M. A., Youssif, A., & Ghalwash, A. Z. (2016). Energy aware and adaptive cross-layer scheme for video transmission over wireless sensor networks. IEEE Sensors Journal, 16(21), 7792–7802.

    Article  Google Scholar 

  6. Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion control protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1369–1390.

    Article  Google Scholar 

  7. Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications (Elsevier), 52, 101–115.

    Article  Google Scholar 

  8. Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(4), 1839–1859.

    Article  Google Scholar 

  9. Sergiou, C., Vassiliou, V., & Paphitis, A. (2013). Hierarchical tree alternative path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Networks (Elsevier), 11(1), 257–272.

    Article  Google Scholar 

  10. Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., & Michael, L. (2013). Congestion control in wireless sensor networks based on bird flocking behavior. Computer Networks (Elsevier), 57(5), 1167–1191.

    Article  Google Scholar 

  11. Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., & Mohajerzadeh, A. H. (2014). HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. Journal of Network and Computer Applications (Elsevier), 37, 216–228.

    Article  Google Scholar 

  12. Yaghmaee, M. H., & Adjeroh, D. A. (2009). Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks. Computer Networks (Elsevier), 53(11), 1798–1811.

    Article  Google Scholar 

  13. Lee, J. H., & Jung, I. B. (2010). Adaptive-compression based congestion control technique for wireless sensor networks. Sensors Journal (MDPI), 10(4), 2919–2945.

    Article  Google Scholar 

  14. Teo, J. Y., Ha, Y., & Thani, C. K. (2008). Interference-minimized multipath routing with congestion control in wireless sensor network for high-rate streaming. IEEE Transaction on Mobile Computing, 7(9), 1124–1137.

    Article  Google Scholar 

  15. Lee, D., & Chung, K. (2010). Adaptive duty-cycle based congestion control for home automation networks. IEEE Transaction on Consumer Electron, 56(1), 42–47.

    Article  Google Scholar 

  16. Vurran, M. C., & Akyildiz, I. F. (2010). XLP: A cross-layer protocol for efficient communication in wireless sensor networks. IEEE Transaction on Mobile Computing, 9(11), 1578–1591.

    Article  Google Scholar 

  17. Jaewon, K., Yanyong, Z., & Nath, B. (2007). TARA: Topology-aware resource adaptation to alleviate congestion in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 18(7), 919–931.

    Article  Google Scholar 

  18. Yin, X., Zhou, X., Huang, R., Fang, Y., & Li, S. (2009). A fairness-aware congestion control scheme in networks. IEEE Transaction on Vehicular Technology, 58(9), 5225–5234.

    Article  Google Scholar 

  19. Sergiou, C., Vassiliou, V., & Paphitis, A. (2014). Congestion control in wireless sensor networks through dynamic alternative path selection. Computer Networks (Elsevier), 75((PA)), 226–238.

    Article  Google Scholar 

  20. Aghdam, S. M., Khansari, M., Rabiee, H. R., & Salehi, M. (2014). WCCP: A congestion control protocol for wireless multimedia communication in sensor networks. Ad Hoc Networks (Elsevier), 13((PB)), 516–534.

    Article  Google Scholar 

  21. Wan, C. Y., Eisenman, S. B., & Campbell, A. T. (2011). Energy-efficient congestion detection and avoidance in sensor networks. ACM Transactions on Sensor Networks (TOSN), 7(4), 1–31.

    Article  Google Scholar 

  22. Rajan, A. U., Raja, K., Jeyasekar, A., & Lattanze, A. J. (2015). Energy-efficient predictive congestion control for wireless sensor networks. IET Wireless Sensor Systems (IET), 5(3), 115–123.

    Article  Google Scholar 

  23. Ren, F., He, T., Das, S. K., & Lin, C. (2011). Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1585–1599.

    Article  Google Scholar 

  24. Vedantham, R., Sivakumar, R., & Park, S. J. (2007). Sink-to-sensors congestion control. Ad Hoc Networks (Elsevier), 5(4), 462–485.

    Article  Google Scholar 

  25. Javaid, S., Fahim, H., Hamid, Z., & Hussain, F. B. (2016). Traffic-aware congestion control (TACC) for wireless multimedia sensor networks. Multimedia Tools and Applications (Springer). https://doi.org/10.1007/s11042-016-4224-2.

  26. Paek, J., & Govindan, R. (2010). RCRT: rate-controlled reliable transport protocol for wireless sensor networks. ACM Transaction on Sensor Networks (TOSN), 7(3) Article no. 20.

  27. Wang, C., Li, B., Sohraby, K., Daneshmand, M., & Hu, Y. (2007). Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE Journal on Selected Areas in Communications, 5(4), 786–795.

    Article  Google Scholar 

  28. Zawodniok, M., & jagannathan, S. (2007). Predictive congestion control protocol for wireless sensor networks. IEEE Transaction on Wireless Communication, 6(11), 3955–3963.

    Article  Google Scholar 

  29. Zarei, M., Rahmani, A. M., & Farazkish, R. (2011). CCTF: congestion control protocol based on trustworthiness of nodes in wireless sensor networks using fuzzy logic. International Journal of Ad Hoc and Ubiquitous Computing, 8(1), 54–63.

    Article  Google Scholar 

  30. Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters (IET), 44(13), 800–801.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaei, M., Sabbagh, P. & Yazdanpanah, F. A QoS-aware congestion control mechanism for wireless multimedia sensor networks. Wireless Netw 25, 4173–4192 (2019). https://doi.org/10.1007/s11276-018-1738-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1738-8

Keywords

Navigation