Bio-inspired power control and channel allocation for cellular networks with D2D communications

Article
  • 2 Downloads

Abstract

With the tremendous increment of traffic in the next generation mobile networks, device to device (D2D) communication is proposed to relieve the traffic burden of the base station and improve the overall network capacity. It supports direct communications between devices and could reuse the resources of cellular users (CUs). Despite the advantages, D2D communications bring great challenges in interference management. In this paper, we study the power control and channel allocation problems in three scenarios: (1) one CU and one D2D pair; (2) one CU and multiple D2D pairs; (3) multiple CUs and multiple D2D pairs. The goal is to coordinate the mutual interferences and maximize the overall network capacity. We derive sufficient conditions to guarantee the efficiency of D2D communications in scenarios with one CU and one D2D pair. We propose the bio-inspired PSO-P power control algorithm for the scenarios with one CU and multiple D2D pairs, and the PSO-CP algorithm for the scenarios with multiple CUs and multiple D2D pairs to jointly assign channels and powers. Simulation results show that the proposed algorithms are efficient in improving the overall network capacity.

Keywords

D2D Channel allocation Power control Bio-inspired algorithm PSO 

Notes

Acknowledgements

This work is supported by the Innovation Young Researcher Program (No. 2042016kf0020) and the China’s Postdoctoral Science Fund (No. 2017M612503).

References

  1. 1.
    Cisco. (2017). Visual Networking Index.Google Scholar
  2. 2.
    Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 18(3), 1617–1655.CrossRefGoogle Scholar
  3. 3.
    Sciancalepore, V., Mancuso, V., Banchs, A., Zaks, S., & Capone, A. (2016). Enhanced content update dissemination through D2D in 5G cellular networks. IEEE Transactions on Wireless Communications, 15(11), 7517–7530.CrossRefGoogle Scholar
  4. 4.
    Gandotra, P., & Jha, R. K. (2016). Device-to-device communication in cellular networks: A survey. Journal of Network and Computer Applications, 71, 99–117.CrossRefGoogle Scholar
  5. 5.
    Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.CrossRefGoogle Scholar
  6. 6.
    Yang, K., Martin, S., Xing, C., Wu, J., & Fan, R. (2016). Energy-efficient power control for device-to-device communications. IEEE Journal on Selected Areas in Communications, 34(12), 3208–3220.CrossRefGoogle Scholar
  7. 7.
    Yu, C. H., Tirkkonen, O., Doppler, K., & Ribeiro, C. (2009). Power optimization of device-to-device communication underlaying cellular communication. In IEEE international conference on communications (pp. 1–5).Google Scholar
  8. 8.
    Gjendemsjo, A., Gesbert, D., Oien, G. E., & Kiani, S. G. (2006). Optimal power allocation and scheduling for two-cell capacity maximization. In International symposium on modeling and optimization in mobile, ad hoc and wireless networks (pp. 1–6).Google Scholar
  9. 9.
    Chen, C. S., & Oien, G. E. (2008). Optimal power allocation for two-cell sum rate maximization under minimum rate constraints. In IEEE international symposium on wireless communication systems (pp. 396–400).Google Scholar
  10. 10.
    Gjendemsjø, A., Gesbert, D., Øien, G. E., & Kiani, S. G. (2008). Binary power control for sum rate maximization over multiple interfering links. IEEE Transactions on Wireless Communications, 7(8), 3164–3173.CrossRefGoogle Scholar
  11. 11.
    Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2016). Resource allocation for D2D communication underlaid cellular networks using graph-based approach. IEEE Transactions on Wireless Communications, 15(10), 7099–7113.CrossRefGoogle Scholar
  12. 12.
    Chao, S. L., Lee, H. Y., Chou, C. C., & Wei, H. Y. (2013). Bio-inspired proximity discovery and synchronization for D2D communications. IEEE Communications Letters, 17(12), 2300–2303.CrossRefGoogle Scholar
  13. 13.
    Pratap, A., & Misra, R. (2015). Firefly inspired improved distributed proximity algorithm for D2D communication. In Parallel and distributed processing symposium workshop (pp. 323–328).Google Scholar
  14. 14.
    Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.CrossRefGoogle Scholar
  15. 15.
    Su, L., Ji, Y. S., Wang, P., & Liu, F. (2013). Resource allocation using particle swarm optimization for D2D communication underlay of cellular networks. In IEEE wireless communications and networking conference (pp. 129–133).Google Scholar
  16. 16.
    Sun, S., & Shin, Y. (2014). Resource allocation for D2D communication using particle swarm optimization in LTE networks. In International conference on information and communication technology convergence (pp. 371–376).Google Scholar
  17. 17.
    Gong, W., & Wang, X. (2015). Particle swarm optimization based power allocation schemes of device-to-device multicast communication. Wireless Personal Communications, 85(3), 1261–1277.CrossRefGoogle Scholar
  18. 18.
    Sun, S. J., Kim, K. Y., Shin, O. S., & Shin, Y. (2015). Device-to-device resource allocation in LTE-advanced networks by hybrid particle swarm optimization and genetic algorithm. Peer-to-Peer Networking and Applications, 9(5), 945–954.CrossRefGoogle Scholar
  19. 19.
    Guo, J., Durrani, S., Zhou, X. Y., & Yanikomeroglu, H. (2017). Device-to-device communication underlaying a finite cellular network region. IEEE Transactions on Wireless Communications, 16(1), 332–347.CrossRefGoogle Scholar
  20. 20.
    Elsawy, H., Hossain, E., & Alouini, M. S. (2014). Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Transactions on Communications, 62(11), 4147–4161.CrossRefGoogle Scholar
  21. 21.
    Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2016). Energy-efficient resource allocation for D2D communications in cellular networks. IEEE Transactions on Vehicular Technology, 65(9), 2251–2256.CrossRefGoogle Scholar
  22. 22.
    Chandrasekhar, V., & Shen, Z. (2008). Optimal uplink power control in two-cell systems with rise-over-thermal constraints. IEEE Communications Letters, 12(3), 173–175.CrossRefGoogle Scholar
  23. 23.
    Xu, L., Jiang, C. X., Shen, Y. Y., Quek, T. Q. S., Han, Z., & Ren, Y. (2016). Energy efficient D2D communications: A perspective of mechanism design. IEEE Transactions on Wireless Communications, 15(11), 7272–7285.CrossRefGoogle Scholar
  24. 24.
    Papandriopoulos, J., & Evans, J. S. (2009). SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks. IEEE Transactions on Information Theory, 55(8), 3711–3724.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lee, N., Lin, X. Q., Andrews, J. G., & Heath, R. W. (2015). Power control for D2D underlaid cellular networks: Modeling, algorithms, and analysis. IEEE Journal on Selected Areas in Communications, 33(1), 1–13.CrossRefGoogle Scholar
  26. 26.
    Wang, J. H., Zhu, D. H., Zhao, C. M., Li, J. C. F., & Lei, M. (2013). Resource sharing of underlaying device-to-device and uplink cellular communications. IEEE Communications Letters, 17(6), 1148–1151.CrossRefGoogle Scholar
  27. 27.
    Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2014). Joint subchannel and power allocation for D2D communications in cellular networks. In WCNC (pp. 1338–1343).Google Scholar
  28. 28.
    Azam, M., Ahmad, M., Naeem, M., Iqbal, M., Khwaja, A. S., Anpalagan, A., et al. (2016). Joint admission control, mode selection and power allocation in D2D communication systems. IEEE Transactions on Vehicular Technology, 65(9), 7322–7333.CrossRefGoogle Scholar
  29. 29.
    Yin, R., Zhong, C. J., Yu, G. D., Zhang, Z. Y., Wong, K. K., & Chen, X. M. (2016). Joint spectrum and power allocation for D2D communications underlaying cellular networks. IEEE Transactions on Vehicular Technology, 65(4), 2182–2195.CrossRefGoogle Scholar
  30. 30.
    Wen, S., Zhu, X. Y., Lin, Z. S., Zhang, X., & Yang, D. C. (2014). Energy efficient power allocation schemes for device-to-device (D2D) communication. In Vehicular technology conference (pp. 1–5).Google Scholar
  31. 31.
    Cai, X., Zheng, J., Zhang, Y., & Murata, H. (2014) A capacity oriented resource allocation algorithm for device-to-device communication in mobile cellular Networks. In IEEE international conference on communications (pp. 2233–2238).Google Scholar
  32. 32.
    Chen, B., Zheng, J., & Zhang, Y. (2015). A time division scheduling resource allocation for D2D communication in cellular networks. In IEEE international conference on communications (pp. 5422–5428).Google Scholar
  33. 33.
    Chen, B., Zheng, J., Zhang, Y., & Murata, H. (2014). SARA a service-aware resource allocation scheme for device-to-device communication underlaying cellular networks. In IEEE global communications conference (pp. 350–358).Google Scholar
  34. 34.
    Cai, X., Zheng, J., & Zhang, Y. (2015). A graph coloring based resource allocation algorithm for D2D communication in cellular networks. In IEEE international conference on communications (pp. 5429–5434).Google Scholar
  35. 35.
    Vlachos, C., Elshaer, H., Chen, J., Friderikos, V., & Dohler, M. (2017). Bio-inspired resource allocation for relay-aided device-to-device communications. In IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–6).Google Scholar
  36. 36.
    Chen, B., Zhao, M. J., Lei, M., & Zhang, L. (2016). Energy-efficient MIMO precoding and power allocation for device-to-device underlay communication in cellular networks. In Vehicular technology conference (pp. 1–5).Google Scholar
  37. 37.
    Liang, T., Zhang, T. K., Cao, J. L., & Feng, C. Y. (2015). Joint resource allocation and power control scheme for device-to-device communication underlaying cellular networks. In International symposium on wireless personal multimedia communications (pp. 568–572).Google Scholar
  38. 38.
    Tang, R., Dong, J. J., Zhu, Z. C., Liu, J. H., Zhao, J., & Qu, H. (2015). Resource allocation for underlaid device-to-device communication by incorporating both channel assignment and power control. In Fifth international conference on communication systems and network technologies (pp. 432–436).Google Scholar
  39. 39.
    Xu, W., Li, S., Xu, Y., & Lin, X. (2015). Underlaid-D2D-assisted cooperative multicast based on social networks. Peer-to-Peer Networking and Applications, 9(5), 923–935.CrossRefGoogle Scholar
  40. 40.
    Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.CrossRefGoogle Scholar
  41. 41.
    Shannon, C. E. (1948). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing & Communications Review, 27(4), 623–656.MathSciNetMATHGoogle Scholar
  42. 42.
    Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (pp. 1942–1948).Google Scholar
  43. 43.
    Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. IEEE International Conference on Systems, Man and Cybernetics, 5, 4104–4108.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronic Information SchoolWuhan UniversityWuhanChina

Personalised recommendations