Advertisement

Joint MMSE transceiver design for downlink heterogeneous network

  • Zhannan Li
  • Hangsong Yan
  • I-Tai Lu
Article

Abstract

In this paper, we propose a minimum mean square error (MMSE) based transceiver design scheme for a downlink multiple-input multiple-output two-tier heterogeneous network with general linear equality per-cell power constraints. Three practical channel models with both perfect and imperfect channel state information are used in simulations. In each channel model, we consider two system configurations, two data transmission schemes and two cellular cooperation scenarios. Our study shows that the proposed MMSE scheme is more flexible than interference alignment (IA) based scheme. For the cases where the IA-type scheme is applicable, the proposed scheme generally outperforms IA-type scheme in terms of average sum rate and bit error rate, but is computationally more complex than the IA-type scheme.

Keywords

Heterogeneous networks MIMO MMSE Interference alignment 

References

  1. 1.
    Abdelnasser, A., Hossain, E., & Kim, D. I. (2014). Clustering and resource allocation for dense femtocells in a two-tier cellular OFDMA network. IEEE Transactions on Wireless Communications, 13(3), 1628–1641.CrossRefGoogle Scholar
  2. 2.
    Hwang, I., Song, B., & Soliman, S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.CrossRefGoogle Scholar
  3. 3.
    Ghosh, A., et al. (2012). “Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine, 50(6), 54–64.CrossRefGoogle Scholar
  4. 4.
    Cisco White paper. (2017). Cisco visual networking index: Global mobile data traffic forecast update, 20162021 white paper (pp. 1–35).Google Scholar
  5. 5.
    Wu, W., Yang, Q., Gong, P., et al. (2016). Energy-efficient resource optimization for OFDMA-based multi-homing heterogeneous wireless networks. IEEE Transactions on Signal Processing, 64(22), 5901–5913.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wireless Communications, 19(3), 86–95.CrossRefGoogle Scholar
  7. 7.
    Sharma, S., Chatzinotas, S., & Ottersten, B. (2013). Interference alignment for spectral coexistence of heterogeneous networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–14.CrossRefGoogle Scholar
  8. 8.
    Guler, B., & Yener, A. (2014). Selective interference alignment for MIMO cognitive femtocell networks. IEEE Journal on Selected Areas in Communications, 32(3), 439–450.CrossRefGoogle Scholar
  9. 9.
    Men, H., Zhao, N., Jin, M., & Kim, J. M. (2015). Optimal transceiver design for interference alignment based cognitive radio networks. IEEE Communications Letters, 19(8), 1442–1445.CrossRefGoogle Scholar
  10. 10.
    Ben Halima, S., & Saadani, A. (2012). Joint clustering and interference alignment for overloaded femtocell networks. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1229–1233), Shanghai.Google Scholar
  11. 11.
    Pantisano, F., Bennis, M., Saad, W., et al. (2013). Interference alignment for cooperative femtocell networks: A game-theoretic approach. IEEE Transactions on Mobile Computing, 12(99), 2233–2246.CrossRefGoogle Scholar
  12. 12.
    Shin, W., Noh, W., Jang, K., & Choi, H. H. (2012). Hierarchical interference alignment for downlink heterogeneous networks. IEEE Transactions on Wireless Communications, 11(12), 4549–4559.CrossRefGoogle Scholar
  13. 13.
    Vu, T. T., Kha, H. H., Muta, O., et al. (2017). Energy-efficient interference mitigation with hierarchical partial coordination for MIMO heterogeneous networks. IEICE Transactions on Communications, E100-B(6), 1023–1030.CrossRefGoogle Scholar
  14. 14.
    Lu, E., Ma, T., & Lu, I. T. (2011). Interference alignment-like behaviors of MMSE designs for general multiuser MIMO systems. In Proceedings of IEEE global telecommunications conference (GLOBECOM), Houston, TX, USA.Google Scholar
  15. 15.
    Liu, G., Sheng, M., Wang, X., et al. (2015). Interference alignment for partially connected downlink MIMO heterogeneous networks. IEEE Transactions on Communications, 63(2), 551–564.CrossRefGoogle Scholar
  16. 16.
    Shehata, M., Kurras, M., Hassan, K., et al. (2016). Hierarchical precoding in a realistic ultradense heterogeneous environment exceeding the degrees of freedom. International Journal of Antennas and Propagation.  https://doi.org/10.1155/2016/4796474.Google Scholar
  17. 17.
    Peng, R., & Tian, Y. (2016). Inter-tier interference coordination in massive-MIMO system based on statistical channel information. In Proceedings of IEEE/CIC international conference on communications in China (ICCC workshops) (pp. 1–6), Chengdu.Google Scholar
  18. 18.
    Veetil, S. T., Kuchi, K., & Ganti, R. K. (2014). Spatial multiplexing in heterogeneous networks with MMSE receiver. In Proceedings of IEEE global communications conference (pp. 3684-3689), Austin, TX.Google Scholar
  19. 19.
    Cao, Y., Zhao, N., et al. (2018). Optimization or alignment: Secure primary transmission assisted by secondary networks. IEEE Journal on Selected Areas in Communications.  https://doi.org/10.1109/JSAC.2018.2824360.Google Scholar
  20. 20.
    Zong, Z., Feng, H., et al. (2016). Optimal transceiver design for SWIPT in K-user MIMO interference channels. IEEE Transactions on Wireless Communications, 15(1), 430–445.CrossRefGoogle Scholar
  21. 21.
    Li, J., Tai, I., & Lu, E. (2010). Robust MMSE transceiver designs for downlink MIMO systems with multicell cooperation. International Journal of Digital Multimedia Broadcasting.  https://doi.org/10.1155/2010/815704.Google Scholar
  22. 22.
    Ding, M., & Blostein, S. D. (2009). MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Transactions on Signal Processing, 57(3), 1141–1150.MathSciNetCrossRefGoogle Scholar
  23. 23.
    GPP. (2017). Study on 3D channel model for LTE. 3rd Generation Partnership Project (3GPP), TR 36.873 V12.3.0.Google Scholar
  24. 24.
    Baum, D. S., Hansen, J., & Salo, J. (2005). An interim channel model for beyond-3G systems: Extending the 3GPP spatial channel model (SCM). In Proceedings of IEEE 61st vehicular technology conference (3132-3136).Google Scholar
  25. 25.
    Gomadam, K., Cadambe, V. R., & Jafar, S. A. (2011). A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Transactions on Information Theory, 57(6), 3309–3322.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Strassen, V. (1969). Gaussian elimination is not optimal. Numerisch Mathematik, 13, 354–356.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information and Communication EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.NYU WIRELESS Research CenterNYU Tandon School of EngineeringBrooklynUSA

Personalised recommendations