Advertisement

Adaptive downlink packet scheduling in LTE networks based on queue monitoring

  • N. D. Adesh
  • A. Renuka
Article
  • 91 Downloads

Abstract

The dynamic packet scheduling is a key component of LTE network to enhance the system throughput, as well as to satisfy the end users with the quality of service. However, the burst in user data traffic leads to user queue overflow at eNodeB due to resource starvation. Therefore, in this paper, queue monitoring and resource scheduling algorithms are proposed for LTE downlink transmission to reduce overflow of the user queue at eNodeB, and also to reduce the transmission time of the packet. On the other hand, this also enhances the system throughput and maintains fairness among the users. The dynamic packet scheduling mechanism first checks the queue level of user at eNodeB, channel condition of the user, resource allocation history and QoS of the packets, and then computes the priority metric of user by using these parameters. Then, using three proposed resources allocation mechanisms, the resource blocks are allocated to the users based on priority metric of user as well as queue status of user at eNodeB. The experimental results illustrate that the proposed algorithms enhance the system throughput compared to other existing schedulers. Further, it also improves packet delivery fraction and reduces the transmission time of the packets.

Keywords

Cellular system LTE network Resource scheduling Queue monitoring Quality of service (QoS) Channel quality indicator (CQI) 

References

  1. 1.
    Capozzi, F., Piro, G., Grieco, L., Boggia, G., & Camarda, P. (2013). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Transaction on Communication Survey and Tutorials, 15(2), 678–700.CrossRefGoogle Scholar
  2. 2.
    Carson, S., Jonsson, P., Sethi, J. S., Arvedson, M., Svenningsson, R., Lindberg, P., et al. (2017). Ericsson mobility report. White paper, Ericsson.Google Scholar
  3. 3.
    Chang, C. H. H. (2014). Implementation and evaluation of a QoS-aware downlink scheduling algorithm for LTE networks. Master’s thesis, Simon Fraser University.Google Scholar
  4. 4.
    Gomez, G., Lorca, J., Garcia, R., & Perez, Q. (2013). Towards a QoE-driven resource control in LTE and LTE-A networks. Journal of Computer Networks and Communications.  https://doi.org/10.1155/2013/505910.Google Scholar
  5. 5.
    He, L., & Li, F. (2016). Adaptive and generic scheduling scheme for LTE/LTE-A mobile networks. Journal of Wireless Networks, 22, 2753–2771.CrossRefGoogle Scholar
  6. 6.
    Henderson, T. (2017). ns-3 Tutorial. https://www.nsnam.org/docs/models/singlehtml/index.html. Accessed Jan 20, 2017.
  7. 7.
    Huang, J., & Niu, Z. (2007). Buffer-aware and traffic-dependent packet scheduling in wireless OFDM networks. In Proceeding of IEEE international conference on wireless communications and networking (pp. 1554–1558).Google Scholar
  8. 8.
    Kela, P., Puttonen, J., Kolehmainen, N., Ristaniemi, T., Henttonen, T., & Moisio, M. (2008). Dynamic packet scheduling performance in UTRA long term evolution downlink. In Proceeding of IEEE 3rd international symposium on wireless pervasive computing (pp. 308–313). IEEE.Google Scholar
  9. 9.
    Kela, P., Puttonen, J., Kolehmainen, N., Ristaniemi, T., Henttonen, T., & Moisio, M. (2015). Efficient LTE PDCP buffer management. In Proceeding of IEEE international conference on communications (ICC) (pp. 5928–5934). IEEE.Google Scholar
  10. 10.
    Ku, G., Piro, G., & Walsh, J. M. (2015). Resource allocation and link adaptation in LTE and LTE advanced: A tutorial. IEEE Transaction on Communication Survey and Tutorials, 17(3), 1605–1633.CrossRefGoogle Scholar
  11. 11.
    Kumar, S., Sarkar, A., & Sur, A. (2017). A resource allocation framework for adaptive video streaming over LTE. Journal of Network and Computer Applications, 97, 126–139.CrossRefGoogle Scholar
  12. 12.
    Kushner, H. J., & Whiting, P. A. (2004). Convergence of proportional-fair sharing algorithms under general conditions. IEEE Transaction on Wireless Communications, 3(4), 1250–1259.CrossRefGoogle Scholar
  13. 13.
    Kwan, R., Arnott, R., Trivisonno, R., & Kubota, M. (2010) On pre-emption and congestion control for LTE systems. In Proceeding of IEEE 72nd vehicular technology conference fall (VTC 2010-Fall) (pp. 1–5). IEEE.Google Scholar
  14. 14.
    Lai, W. K., & Tang, C. L. (2013). QoS-aware downlink packet scheduling for LTE networks. Journal of Computer Network, 57(7), 1689–1698.CrossRefGoogle Scholar
  15. 15.
    Lima, F. R. M., Wänstedt, S., Cavalcanti, F. R. P., & Freitas, W. C. (2010). Scheduling for improving system capacity in multiservice 3GPP LTE. Journal of Electrical and Computer Engineering.  https://doi.org/10.1155/2010/819729.Google Scholar
  16. 16.
    Lin, Y., & Yue, G. (2008). Channel-adapted and buffer-aware packet scheduling in LTE wireless communication system. In Proceeding of 4th international conference on wireless communications, networking and mobile computing (pp. 1–4).Google Scholar
  17. 17.
    Madi, N. K. M., Hanapi, Z. B. M., Othman, M., & Shamala, S. (2017). Two-level QoS-aware frame-based downlink resources allocation for RT/NRT services fairness in LTE networks. Journal of Telecommunication Systems, 66, 357–375.CrossRefGoogle Scholar
  18. 18.
    Min, W., Pettersson, J., Timner, Y., Wanstedt, S., & Hurd, M. (2012). Efficient QoS over LTE—A scheduler centric approach. In Proceeding of IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1395–1400). IEEE.Google Scholar
  19. 19.
    Min, W., Pettersson, J., Timner, Y., Wanstedt, S., & Hurd, M. (2017). Downlink scheduling in LTE: Challenges, improvement, and analysis. In Proceeding of IEEE 13th international conference on wireless communications and mobile computing (IWCMC). IEEE.Google Scholar
  20. 20.
    Min, W., Pettersson, J., Timner, Y., Wanstedt, S., & Hurd, M. (2017). QoS-guaranteed channel-aware scheduling and resource grouping under non-full buffer traffic for LTE-A networks. In Proceeding of IEEE international conference on wireless communications and networking (WCNC). IEEE.Google Scholar
  21. 21.
    Mushtaq, M. S., Fowler, S., Mellouk, A., & Augustin, B. (2014). QoE/QoS-aware LTE downlink scheduler for VoIP with power saving. Journal of Network and Computer Applications, 51, 29–46.CrossRefGoogle Scholar
  22. 22.
    Nardini, G., Stea, G., Virdis, A., Sabella, D., & Caretti, M. (2016). Practical large-scale coordinated scheduling in LTE-Advanced networks. Journal of Wireless Networks, 22, 11–31.CrossRefGoogle Scholar
  23. 23.
    Oliver-Balsalobre, P., Toril, M., Luna-Ramírez, S., & Aviles, J. M. R. (2016). Self-tuning of scheduling parameters for balancing the quality of experience among services in LTE. EURASIP Journal on Wireless Communications and Networking.  https://doi.org/10.1186/s13638-015-0508-x.Google Scholar
  24. 24.
    Piro, G., Grieco, L. A., Boggia, G., Fortuna, R., & Camarda, P. (2011). Two-level downlink scheduling for real-time multimedia services in LTE networks. IEEE Transaction on Multimedia, 13(5), 1052–1065.CrossRefGoogle Scholar
  25. 25.
    Razzac, A. A., Elayoubi, S. E., Chahed, T., & Elhassan, B. (2016). Impact of playout buffering on mobile TV performance. IEEE Transactions on Mobile Computing, 15, 377–391.CrossRefGoogle Scholar
  26. 26.
    Sadiq, B., Madan, R., & Sampath, A. (2009). Downlink scheduling for multiclass traffic in LTE. EURASIP Journal on Wireless Communications and Networking.  https://doi.org/10.1155/2009/510617.Google Scholar
  27. 27.
    Singh, D., & Singh, P. (2013). Radio resource scheduling in 3GPP LTE: A review. International Journal of Engineering Trends and Technology (IJETT), 4, 2405–2411.Google Scholar
  28. 28.
    Sulthana, S. F., & Nakkeeran, R. (2014). Study of downlink scheduling algorithms in LTE networks. Journal of Networks, 9(12), 3381–3391.Google Scholar
  29. 29.
    Susitaival, R., Tan, Y., & Torsner, P. (2015). Active queue management for wireless communication network uplink. US Patent 8,964,539. https://www.google.co.in/patents/US8964539. Accessed June 29, 2017.
  30. 30.
    Tung, L. P., Lin, Y. D., Kuo, Y. H., Lai, Y. C., & Sivalingam, K. M. (2014). Reducing power consumption in LTE data scheduling with the Constraints of channel condition and QoS. Computer Networks, 75, 149–159.CrossRefGoogle Scholar
  31. 31.
    Zaki, Y., Weerawardane, T., Gorg, C., & Timm-Giel, A. (2011). Multi-QoS-aware fair scheduling for LTE. In Proceeding of IEEE vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.Google Scholar
  32. 32.
    Zaki, Y., Weerawardane, T., Hauth, S., Wallmeier, E., & Gorg, C. (2013). Intelligent traffic enforcement for LTE backhaul. In Proceeding of IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 3077–3082). IEEE.Google Scholar
  33. 33.
    Zhu, R., & Yang, J. (2015). Buffer-aware adaptive resource allocation scheme in LTE transmission systems. EURASIP Journal on Wireless Communications and Networking.  https://doi.org/10.1186/s13638-015-0398-y.
  34. 34.
    Zolfaghari, A., & Taheri, H. (2012). Queue-aware scheduling and congestion control for LTE. In Proceeding of 18th IEEE international conference on networks (ICON) (pp. 131–136).Google Scholar
  35. 35.
    Zolfaghari, A., & Taheri, H. (2015). Queue-aware channel-adapted scheduling and congestion control for best-effort services in LTE networks. Canadian Journal of Electrical and Computer Engineering, 38(2), 170–182.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations