Skip to main content
Log in

A modified design of Raptor codes for small message length

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Raptor codes are a class of fountain codes which can get capacity-achieving performance over various channels. Traditional Raptor codes can obtain perfect performance for large message length. However, small message length can cause significant performance deterioration. In this paper, a modified design of Raptor codes for small message length is proposed. The proposed Raptor codes are obtained by pre-coding the information symbols by low rate low-density parity-check codes and utilizing a low constant average degree distribution with high intermediate symbol recovery rate. Simulation results demonstrate that, although traditional Raptor codes can get good asymptotical performance, our proposed Raptor codes outperform traditional Raptor codes for small message length over binary erasure channels and binary input additive white Gaussian noise channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that, for the simulation over the AWGN channel in the rest of this section, we let BER and FER denote bit error rate and frame error rate, respectively.

References

  1. MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings Communications, 152(6), 1062–1068.

    Article  Google Scholar 

  2. Luby, M. (2002). LT codes. In Proceedings of the 2002 IEEE symposium on foundations of computer science (FOCS) (pp. 271–280)

  3. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.

    Article  MathSciNet  MATH  Google Scholar 

  4. Estesami, O., & Shokrollahi, A. (2006). Raptor codes on binary memoryless symmetric channels. IEEE Transactions on Information Theory, 52(5), 2033–2051.

    Article  MathSciNet  MATH  Google Scholar 

  5. Sørensen, J. H., Koike-Akino, T., Orlik, P., Østergaard, J., & Popovski, P. (2009). Fountain codes over fading relay channels. IEEE Transactions on Wireless Communications, 8(6), 3278–3287.

    Article  Google Scholar 

  6. Sørensen, J. H., Koike-Akino, T., Orlik, P., Østergaard, J., & Popovski, P. (2014). Ripple design of LT codes for BIAWGN channels. IEEE Transactions on Communications, 62(2), 434–441.

    Article  Google Scholar 

  7. Zhang, M., Kim, S., Chang, J. Y., & Kim, W. (2015). Soft decoding method for systematic raptor codes. IET Communications, 9(16), 1933–1940.

    Article  Google Scholar 

  8. Hyytiä, E., Tirronen, T., & Virtamo, J. (2007). Optimal degree distribution for LT codes with small message length. In IEEE international conference on computer communications (INFOCOM) (pp. 2576–2580).

  9. Sørensen, J. H., Popovski, P., & Østergaard, J. (2012). Design and analysis of LT codes with decreasing ripple size. IEEE Transactions on Communications, 60(11), 3191–3197.

    Article  Google Scholar 

  10. Yao, W., Yi, B., Huang, T., & Li, W. (2016). Poisson robust soliton distribution for LT codes. IEEE Communications Letters, 20(8), 1499–1502.

    Article  Google Scholar 

  11. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  12. Anghavi, S. (2007). Intermediate performance of rateless codes. In Proceedings of the 2007 IEEE information theory workgroup (pp. 478–482).

  13. Talari, A., & Rahnavard, N. (2012). On the intermediate symbol recovery rate of rateless codes. IEEE Transactions on Communications, 60(5), 1237–1242.

    Article  Google Scholar 

  14. Li, H., & Marsland, I. D. (2008). A comparison of rateless codes at short block lengths. In IEEE international conference on communications (ICC) (pp. 4483–4488).

  15. Luby, M., Mitzenmacher, M., & Shokrollahi, A. (1998). Analysis of random processes via and-or tree evaluation. In Proceedings of the 9th SIAM symposium on discrete algorithms (SODA) (pp. 364–373)

  16. Yuan, L., & An, P. (2010). Design of UEP-raptor codes over BEC. European Transactions on Telecommunications, 21, 30–34.

    Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182C197.

    Article  Google Scholar 

  18. Venkiah, A., Poulliat, C., & Declercq, D. (2009). Jointly decoded raptor codes: analysis and design for the BIAWGN channel. In EURASIP journal on wireless communications and networking (pp. 1–11)

  19. Richardson, T., & Urbanke, R. (2008). Modern coding theory. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  20. Sivasubramanian, B., & Leib, H. (2008). Fixed-rate raptor codes over rician fading channels. IEEE Transactions on Vehicular Technology, 57(6), 3905–3911.

    Article  Google Scholar 

  21. Hu, X.-Y., Eleftheriou, E., & Arnold, D. M. (2005). Regular and irregular progressive edge-growth tanner graphs. IEEE Transactions on Information Theory, 51(1), 386–398.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities lzujbky-2017-188, the National Natural Science Foundation of China under Grant 61601170 and CERNET Innovation Project NGII20170503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Pan, J. & Deng, K. A modified design of Raptor codes for small message length. Wireless Netw 25, 2437–2447 (2019). https://doi.org/10.1007/s11276-018-1674-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1674-7

Keywords

Navigation