A hierarchical architecture based on traveling salesman problem for hybrid wireless network-on-chip

  • Bahareh Bahrami
  • Mohammad Ali Jabraeil Jamali
  • Shahram Saeidi


The increased latency and power consumption are the major challenges of traditional wired Network-on-Chip (NoC). The Wireless NoC (WNoC) architecture is regarded as a novel approach to solve NoC problems. In this paper, hybrid hierarchical structures are studied. The considered topologies for the first level of the hierarchy include: Chordal Ring of degree 3 (CR) and Ring-Connected Cycles (RCC). On the second level of the hierarchy, inspired by the Traveling Salesman Problem (TSP), a new method is proposed to form the topology. Considering the NP-Hard nature of the problem, the hybrid PS-ACO algorithm is used to obtain the desired tour. In this paper, the uniform random traffic is used as the synthetic traffic pattern and the 3-tuple traffic is used as a real application traffic pattern. The simulation results show that the proposed structure has fewer wired links and considerably increased efficiency compared with a wired mesh topology in NoC.


Wireless NoC Hierarchical architecture TSP PS-ACO 


  1. 1.
    ITRS. (2011). Edition—system drivers (2011).Google Scholar
  2. 2.
    Benini, L., & De Micheli, G. (2002). Network on chip: A new paradigm for systems on chip design. In Proceedings of design, automation and test in Europe conference and exhibition (pp. 418–419).Google Scholar
  3. 3.
    Semiconductor Industry Association. (2009). ITRS: International technology roadmap for semiconductors. [Online]. Available:
  4. 4.
    Semiconductor Industry Association. (2012). ITRS: International technology roadmap for semiconductors. [Online]. Available:
  5. 5.
    Karkar, A., Mak, T., Tong, K.-F., & Yakovlev, A. (2016). A survey of emerging interconnects for on-chip efficient multicast and broadcast in many-cores. IEEE Circuits and Systems Magazine, 16(1), 58–72.CrossRefGoogle Scholar
  6. 6.
    Pavlidis, V., & Friedman, E. (2006). 3-D Topologies for networks-on-chip. In IEEE international SOC conference (pp. 285–288).Google Scholar
  7. 7.
    Shacham, A., Bergman, K., & Carloni, L. (2008). Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Transactions on Computers, 57(9), 1246–1260.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chang, M., Cong, J., Kaplan, A., Naik, M., Reinman, G., Socher, E., & Tam, S.-W. (2008). CMP network-on-chip overlaid with multi-band RF-interconnect. In Proceedings of IEEE international symposium high-performance computer architecture (HPCA) (pp. 191–202).Google Scholar
  9. 9.
    Carloni, L., Pande, P., & Xie, Y. (2009). Network-on-chip in emerging interconnect paradigms: Advantages and challenges. In Proceedings of 3rd ACM/IEEE international symposium network-on-chip (pp. 93–102).Google Scholar
  10. 10.
    Wang, S., & Jin, T. (2014). Wireless network-on-chip: A survey. The Journal of Engineering, 1(1), 1–7. Scholar
  11. 11.
    Ganguly, A., Chang, K., Deb, S., Pande, P. P., Belzer, B., & Teuscher, C. (2011). Scalable hybrid wireless network-on-chip architectures for multicore systems. IEEE Transactions on Computers, 60(10), 1485–1502.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Burke, P. J., Li, S., & Yu, Z. (2006). Quantitative theory of nanowire and nanotube antenna performance. IEEE Transactions on Nanotechnology, 5(4), 314–334.CrossRefGoogle Scholar
  13. 13.
    Kempa, K., et al. (2007). Carbon nanotubes as optical antennae. Advanced Materials, 19, 421–426.CrossRefGoogle Scholar
  14. 14.
    Deb, S., Chang, K., Yu, X., Sah, S. P., Cosic, M., Ganguly, A., et al. (2013). Design of an energy-efficient CMOS-compatible NoC architecture with millimeter-wave wireless interconnects. IEEE Transactions on Computers, 62(12), 2382–2396.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tomassini, M., Giacobini, M., & Darabos, C. (2005). Evolution and dynamics of small-world cellular automata. Complex Systems, 15(4), 261–284.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Murray, J., Wettin, P., Pande, P., & Shirazi, B. (2016). Sustainable wireless network-on-chip architectures. San Francisco, CA: Morgan Kaufmann.Google Scholar
  17. 17.
    Chien, A. (1998). A cost and speed model for k-ary n-cube wormhole routers. IEEE Transactions on Parallel and Distributed Systems, 9(2), 150–162.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Duato, J., Yalamanchili, S., & Ni, L. (2003). Interconnection networks an engineering approach. San Francisco, CA: Morgan Kaufmann.Google Scholar
  19. 19.
    Mineo, A., Palesi, M., Ascia, G., & Catania, V. (2016). Exploiting antenna directivity in wireless NoC architectures. Microprocessors and Microsystems, 43, 59–66.CrossRefGoogle Scholar
  20. 20.
    Schrijver, A. (2005). On the history of combinatorial optimization. Amsterdam: Elsevier.zbMATHGoogle Scholar
  21. 21.
    Aarts, E. H. L., de Bont, F. M. J., Habers, E. H. A., & van Laarhoven, P. J. M. (1986). Parallel implementations of the statistical cooling algorithm. Integration, the VLSI Journal, 4(3), 209–238.CrossRefzbMATHGoogle Scholar
  22. 22.
    Catthoor, F., & de Man, H. (1988). SAMURAI: A general and efficient simulated-annealing schedule with fully adaptive annealing parameters. Integration, the VLSI Journal, 6(2), 147–178.CrossRefGoogle Scholar
  23. 23.
    Shuang, B., Chen, J., & Li, Z. (2011). Study on hybrid PS-ACO algorithm. Applied Intelligence, 34, 64–73.CrossRefGoogle Scholar
  24. 24.
    El-Rewini, H., & Abd-El-Barr, M. (2005). Advanced computer architecture and parallel processing. Hoboken, NJ: Wiley.Google Scholar
  25. 25.
    Arden, B. W., & Lee, H. (1981). Analysis of chordal ring network. IEEE Transactions on Computers, 30(4), 291–295.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Parhami, B. (2002). Introduction to parallel processing algorithms and architectures. New York, NY: Kluwer Academic Publishers.Google Scholar
  27. 27.
    Kim, K., Yoon, H., & Kenneth, K. O. (2000). On-chip wireless interconnection with integrated antennas. In Electron devices meeting (pp. 485–488).Google Scholar
  28. 28.
    Floyd, B., Hung, C.-M., & Kenneth, K. O. (2002). Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters. IEEE Journal of Solid-State Circuits, 37(5), 543–552.CrossRefGoogle Scholar
  29. 29.
    Zhao, D., & Wang, Y. (2008). SD-MAC: Design and synthesis of a hardware-efficient collision-free QoS-aware MAC protocol for wireless network-on-chip. IEEE Transactions on Computers, 57(9), 1230–1245.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhao, D., Wang, Y., Li, J., & Kikkawa, T. (2011). Design of multi-channel wireless noc to improve on-chip communication capacity. In Fifth ACM/IEEE international symposium on network-on-chip (pp. 177–184).Google Scholar
  31. 31.
    Pande, P. P., Ganguly, A., Chang, K., & Teuscher, C. (2009). Hybrid wireless network on chip: A new paradigm in multi-core design. In 2nd International workshop on network on chip architectures (pp. 71–76).Google Scholar
  32. 32.
    Kirkpatrick, S., Gelatt, C., Jr., Vecchi, M., & McCoy, A. (1983). Optimization by simulated annealing. Science, 220(4598), 671–679.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jamali, M. A. J., & Khademzadeh, A. (2009). MinRoot and CMesh: Interconnection architectures for network-on-chip systems. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 3(6), 1303–1308.Google Scholar
  34. 34.
    Chariete, A., Bakhouya, M., Gaber, J., & Wack, M. (2015). A design space exploration methodology for customizing on-chip communication architectures: Towards fractal NoCs. Integration, the VLSI Journal, 50, 158–172.CrossRefGoogle Scholar
  35. 35.
    Deb, S., Ganguly, A., Chang, K., Pande, P., Belzer, B., & Heo, D. (2010). Enhancing performance of network-on-chip architectures with millimeter-wave wireless interconnects. In The 21st IEEE international conference on application-specific systems architectures and processors.Google Scholar
  36. 36.
    Wang, C., Hu, W.-H., & Bagherzadeh, N. (2011). A wireless network-on-chip design for multicore platforms. In Proceedings of 19th euromicro international parallel, distributed and network-based processing (PDP) conference (pp. 409–416).Google Scholar
  37. 37.
    Wang, C., Hu, W.-H., & Bagherzadeh, N. (2012). A load-balanced congestion-aware wireless network-on-chip design for multicore platforms. Microprocessor and Microsystems, 36(7), 555–570.CrossRefGoogle Scholar
  38. 38.
    Hu, W.-H., Wang, C., & Bagherzadeh, N. (2015). Design and analysis of a mesh-based wireless network-on-chip. Journal of Supercomputing, 71(8), 2830–2846.CrossRefGoogle Scholar
  39. 39.
    Rezaei, A., Daneshtalab, M., Safaei, F., & Zhao, D. (2016). Hierarchical approach for hybrid wireless network-on-chip in many-core era. Computers & Electrical Engineering, 51, 225–234.CrossRefGoogle Scholar
  40. 40.
    Bahrami, B., Jamali, M. A. J., & Saeidi, S. (2016). Proposing an optimal structure for the architecture of wireless networks on chip. Telecommunication Systems, 62, 199–214.CrossRefGoogle Scholar
  41. 41.
    Dai, P., Chen, J., Zhao, Y., & Lai, Y.-H. (2015). A study of a wire–wireless hybrid NoC architecture with an energy-proportional multicast scheme for energy efficiency. Computers & Electrical Engineering, 45, 402–416.CrossRefGoogle Scholar
  42. 42.
    Abadal, S., Nemirovsky, M., Alarcón, E., & Cabellos-Aparicio, A. (2015). Networking challenges and prospective impact of broadcast-oriented wireless networks-on-chip. In Proceedings of the ACM/IEEE NoCS.Google Scholar
  43. 43.
    Abadal, S., Mestres, A., Nemirovsky, M., Lee, H., González, A., Alarcón, E., et al. (2016). Scalability of broadcast performance in wireless network-on-chip. IEEE Transactions on Parallel and Distributed Systems, 27(12), 3631–3645.CrossRefGoogle Scholar
  44. 44.
    Kennedy, J., & Eberhart, R. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micromachine and human science.Google Scholar
  45. 45.
    Dorigo, M., & Stutzle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  46. 46.
    Shamim, M.-S., Mansoor, N., Narde, R.-S., Kothandapani, V., Ganguly, A., & Venkataraman, J. (2017). A wireless interconnection framework for seamless inter and intra-chip communication in multichip systems. IEEE Transactions on Computers, 66, 389–402.MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ben-Itzhak, Y., Zahavi, E., Cidon, I., & Kolodny, A. (2012). HNOCS: Modular open-source simulator for Heterogeneous NoCs. In SAMOS conference (pp. 51–57).Google Scholar
  48. 48.
    Soteriou, V., Eisley, N., Wang, H., Li, B., & Peh, L.-S. (2006). Polaris: A system-level roadmap for on-chip interconnection networks. In International conference on computer design (pp. 134–141).Google Scholar
  49. 49.
    Pande, P. P., Grecu, C., Jones, M., Ivanov, A., & Saleh R. (2005). Effect of traffic localization on energy dissipation in NoC-based interconnect. In IEEE international symposium on circuits and systems (pp. 1774–1777).Google Scholar
  50. 50.
    Dally, W., & Towles, B. (2003). Principles and practices of interconnection networks. San Francisco, CA: Morgan Kaufmann.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Khoy Branch, Islamic Azad UniversityKhoyIran
  2. 2.Department of Computer EngineeringShabestar Branch, Islamic Azad UniversityShabestarIran
  3. 3.Department of Computer EngineeringTabriz Branch, Islamic Azad UniversityTabrizIran

Personalised recommendations