Skip to main content

Advertisement

Log in

Sustainable green networking: exploiting degrees of freedom towards energy-efficient 5G systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The carbon footprint concern in the development and deployment of 5G new radio systems has drawn the attention to several stakeholders. In this article, we analyze the critical power consuming component of all candidate 5G system architectures—the power amplifier (PA)—and propose PA-centric resource management solutions for green 5G communications. We discuss the impact of ongoing trends in cellular communications on sustainable green networking and analyze two communications architectures that allow exploiting the extra degrees-of-freedom from multi-antenna and massive antenna deployments: small cells/distributed antenna network and massive MIMO. For small cell systems with a moderate number of antennas, we propose a peak to average power ratio-aware resource allocation scheme for joint orthogonal frequency and space division multiple access. For massive MIMO systems, we develop a highly parallel recurrent neural network for energy-efficient precoding. Simulation results for representative 5G deployment scenarios demonstrate an energy efficiency improvement of one order of magnitude or higher with respect to current state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ITU. (2015). Report on the twenty-first meeting of working party 5D.

  2. He, C., Li, G. Y., Zheng, F.-C., & You, X. (2014). Energy-efficient resource allocation in OFDM systems with distributed antennas. IEEE Transactions Vehicular Technology, 63, 1223–1231.

    Article  Google Scholar 

  3. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.

    Article  Google Scholar 

  4. Sohul, M. M., Yao, M., Ma, X., Imana, E. Y., Marojevic, V., & Reed, J. H. (2016). Next generation public safety networks: A spectrum sharing approach. IEEE Communications Magazine, 54(3), 30–36.

    Article  Google Scholar 

  5. Sohul, M. M., Yao, M., Yang, T., & Reed, J. H. (2015). Spectrum access system for the citizen broadband radio service. IEEE Communications Magazine, 53(7), 18–25.

    Article  Google Scholar 

  6. Qualcomm White Paper. (2016). Exploring 5G new radio: Use cases, capabilities & timeline.

  7. Gunther, A., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49.

    Article  Google Scholar 

  8. Shen, Z., Andrews, J. G., & Evans, B. L. (2005). Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 4(6), 2726–2737.

    Article  Google Scholar 

  9. Xiong, C., Li, G. Y., Zhang, S., Chen, Y., & Xu, S. (2012). Energy-efficient resource allocation in OFDMA networks. IEEE Transactions on Communications, 60(12), 3767–3778.

    Article  Google Scholar 

  10. Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.

    Article  Google Scholar 

  11. Ng, D. W., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.

    Article  Google Scholar 

  12. Han, B., Zhao, S., Yang, B., Zhang, H., Chen, P., & Yang, F. (2016). Historical PMI based multi-user scheduling for FDD massive MIMO systems. In Vehicular technology conference (VTC spring), 2016 IEEE 83rd, Nanjing.

  13. Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18, 40–49.

    Article  Google Scholar 

  14. Schaible, S., & Shi, J. (2003). Fractional programming: The sum-of-ratios case. Optimization Methods and Software, 18(2), 219–229.

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, C., et al. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.

    Article  Google Scholar 

  16. Zhang, H., Dong, Y., Cheng, J., Hossain, M. J., & Leung, V. C. (2016). Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wireless Communications, 23(6), 48–53.

    Article  Google Scholar 

  17. Zhang, H., Jiang, C., Cheng, J., & Leung, V. C. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.

    Article  Google Scholar 

  18. Hasan, Z., et al. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys and Tutorials, 13, 524–540.

    Article  Google Scholar 

  19. Gomez, I., Marojevic, V., & Gelonch, A. (2012). Resource management for software-defined radio clouds. IEEE Micro, 1(32), 44–53.

    Article  Google Scholar 

  20. Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. (2017). Fog radio access networks: Mobility management, interference mitigation and resource optimization. arXiv preprint arXiv:1707.06892.

  21. Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  22. Zhang, H., Nie, Y., Cheng, J., Leung, V. C., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.

    Article  Google Scholar 

  23. Ochiai, H., & Imai, H. (2001). On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Transactions on Communications, 49(2), 282–289.

    Article  MATH  Google Scholar 

  24. Yao, M. Exploiting spatial degrees-of-freedom for energy-efficient next generation cellular systems. PhD dissertation, Virginia Tech.

  25. Ochiai, H., & Imai, H. (2000). Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems. IEEE Journal on Selected Areas in Communications, 18(11), 2270–2277.

    Article  Google Scholar 

  26. Yang, L., Chen, R.-S., Siu, Y.-M., & Soo, K.-K. (2006). PAPR reduction of an OFDM signal by use of PTS with low computational complexity. IEEE Transactions on Broadcasting, 52(1), 83–86.

    Article  Google Scholar 

  27. Studer, C., & Larsson, E. G. (2013). PAR-aware large-scale multi-user MIMO–OFDM downlink. IEEE Journal on Selected Areas in Communications, 31, 303–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Reed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Sohul, M.M., Ma, X. et al. Sustainable green networking: exploiting degrees of freedom towards energy-efficient 5G systems. Wireless Netw 25, 951–960 (2019). https://doi.org/10.1007/s11276-017-1626-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1626-7

Keywords

Navigation