IoT6Sec: reliability model for Internet of Things security focused on anomalous measurements identification with energy analysis

  • Norisvaldo Ferraz Junior
  • Anderson Silva
  • Adilson Guelfi
  • Sergio Takeo Kofuji
Article
  • 103 Downloads

Abstract

Wireless sensor and actuator devices with direct IPv6 Internet access with no human interaction compose the IP-connected Internet of Things (IoT). These devices are resource constrained in processing, memory, and energy—battery operated. IoT devices can have various applications. Although, when directly connected to the Internet they are susceptible to threats (e.g., malicious tamper of packet content to reduce the reliability of device data, the flood of requisitions for the devices to drain their energy). In this way, the literature shows the use of end-to-end security to provide confidentiality, authenticity, and integrity of IoT devices data. However, even with the benefit of secure IoT data, they are not enough to ensure reliable measurements. For this reason, this work presents a reliability model for IoT, focused on the identification of anomalous measurements (using multivariate statistics). In the experiments, we use spatial (proximity) and temporal (time interval variation) correlation, and datasets with true and false data. Additionally, we use an end-to-end secure scenario and analysis of energy consumption. The results prove the feasibility of the triad: reliability (within a system that identifies the type of the anomalous measurements), security, and low energy consumption.

Keywords

IoT security Reliability system Anomalous measurements identification Energy analysis 

Notes

Acknowledgements

This work is funded by the Huawei Company—project number: 2994. The project is managed by Foundation of Support to the University of São Paulo (FUSP) and Eletronic Systems Department of University of São Paulo (PSI). Number of Company / Institution Agreement: OTABRA09160202003286840274.

References

  1. 1.
    Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805.  https://doi.org/10.1016/j.comnet.2010.05.010.CrossRefMATHGoogle Scholar
  2. 2.
    Ding, Z. G., Du, D. J., & Fei, M. R. (2015). An isolation principle based distributed anomaly detection method in wireless sensor networks. International Journal of Automation and Computing, 12(4), 402–412.  https://doi.org/10.1007/s11633-014-0847-9.CrossRefGoogle Scholar
  3. 3.
    Dunkels, A., Osterlind, F., Tsiftes, N., & He, Z. (2007). Software-based on-line energy estimation for sensor nodes. In Proceedings of the 4th workshop on embedded networked sensors—EmNets ’07. New York, NY: ACM Press, p. 28.  https://doi.org/10.1145/1278972.1278979
  4. 4.
    Garcia-Font, V., Carrigues, C., & Rifà-Pous, H. (2016). A comparative study of anomaly detection techniques for smart city wireless sensor networks. Sensors,.  https://doi.org/10.3390/s16060868.Google Scholar
  5. 5.
    Granjal, J., Monteiro, E., & Silva, J. S. (2015). Security in the integration of low-power Wireless Sensor Networks with the Internet: A survey. Ad Hoc Networks, 24(PA), 264–287.  https://doi.org/10.1016/j.adhoc.2014.08.001.CrossRefGoogle Scholar
  6. 6.
    Granjal, J., Silva, R., Monteiro, E., Sa Silva, J., & Boavida, F. (2008). Why is IPSec a viable option for wireless sensor networks. In 2008 5th IEEE international conference on mobile ad hoc and sensor systems. IEEE, pp. 802–807.  https://doi.org/10.1109/MAHSS.2008.4660130.
  7. 7.
    Hayajneh, T., Almashaqbeh, G., Ullah, S., & Vasilakos, A. V. (2014). A survey of wireless technologies coexistence in WBAN: Analysis and open research issues. Wireless Networks, 20(8), 2165–2199.  https://doi.org/10.1007/s11276-014-0736-8.CrossRefGoogle Scholar
  8. 8.
    Hennebert, C., & Santos, J. D. (2014). Security protocols and privacy issues into 6LoWPAN stack: A synthesis. IEEE Internet of Things Journal, 1(5), 384–398.  https://doi.org/10.1109/JIOT.2014.2359538.CrossRefGoogle Scholar
  9. 9.
    Hui, J., & Thubert, P. (2011). Compression format for IPv6 datagrams over IEEE 802.15.4-based networks. https://tools.ietf.org/html/rfc6282. Accessed Feb 2015.
  10. 10.
    IBRL: Intel Lab Data (2004). http://db.csail.mit.edu/labdata/labdata.html.
  11. 11.
    IEEE: IEEE 802.15.4, vol. 2011. IEEE WPAN TG4 (2011).Google Scholar
  12. 12.
    Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of Things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.  https://doi.org/10.1007/s11276-014-0761-7.CrossRefGoogle Scholar
  13. 13.
    Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Upper Saddle River: Pearson Prentice Hall.MATHGoogle Scholar
  14. 14.
    Kasinathan, P., Pastrone, C., Spirito, M.A., & Vinkovits, M. (2013). Denial-of-Service detection in 6LoWPAN based Internet of Things. In 2013 IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob). IEEE, pp. 600–607.  https://doi.org/10.1109/WiMOB.2013.6673419.
  15. 15.
    Kushalnagar, N., Montenegro, G., & Schumacher, C. (2007). IPv6 over low power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals. https://tools.ietf.org/html/rfc4919. Accessed Feb 2015.
  16. 16.
    Loureiro, A. A., Nogueira, J. M. S., Ruiz, L. B., Mini, R. A. D. F., Nakamura, E. F., & Figueiredo, C. M. S. (2003). Redes de Sensores Sem Fio. In: XXI Simpósio Brasileiro de Redes de Computadores, pp. 179–226.Google Scholar
  17. 17.
    Mayzaud, A., Badonnel, R., & Chrisment, I. (2016). A taxonomy of attacks in RPL-based internet of things. International Journal of Network Security, 18(3), 459–473.Google Scholar
  18. 18.
    Mingoti, S. A. (2013). Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte: Editora UFMG.Google Scholar
  19. 19.
    Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516.  https://doi.org/10.1016/j.adhoc.2012.02.016.CrossRefGoogle Scholar
  20. 20.
    Morettin, P. A., & Bussab, W. O. (2004). Estatística Básica. São Paulo: Editora Saraiva.Google Scholar
  21. 21.
    Moshtaghi, M., Leckie, C., Karunasekera, S., Bezdek, J. C., Rajasegarar, S., & Palaniswami, M. (2011). Incremental elliptical boundary estimation for anomaly detection in wireless sensor networks. In: 2011 IEEE 11th international conference on data mining, 1, pp. 467–476. IEEE.  https://doi.org/10.1109/ICDM.2011.80.
  22. 22.
    Rajasegarar, S., Bezdek, J. C., Leckie, C., & Palaniswami, M. (2007). Analysis of anomalies in IBRL data from a wireless sensor network deployment. In 2007 international conference on sensor technologies and applications (SENSORCOMM 2007). IEEE, pp. 158–163.  https://doi.org/10.1109/SENSORCOMM.2007.4394914.
  23. 23.
    Rantos, K., Papanikolaou, A., Manifavas, C., & Papaefstathiou, I. (2013). IPv6 security for low power and lossy networks. In 2013 IFIP wireless days (WD). IEEE, pp. 1–8.  https://doi.org/10.1109/WD.2013.6686510.
  24. 24.
    Rassam, M., Zainal, A., & Maarof, M. (2013). Advancements of data anomaly detection research in wireless sensor networks: A survey and open issues. Sensors, 13(8), 10087–10122.  https://doi.org/10.3390/s130810087.CrossRefGoogle Scholar
  25. 25.
    Raza, S., Duquennoy, S., Chung, T., Yazar, D., Voigt, T., & Roedig, U. (2011). Securing communication in 6LoWPAN with compressed IPsec. In 2011 international conference on distributed computing in sensor systems and workshops (DCOSS). IEEE, pp. 1–8.  https://doi.org/10.1109/DCOSS.2011.5982177.
  26. 26.
    Raza, S., Duquennoy, S., & Selander, G. (2016). Work-in-progress—Internet draft. Compression of IPsec AH and ESP headers for 6LoWPAN networks.Google Scholar
  27. 27.
    Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal, 13(10), 3711–3720.  https://doi.org/10.1109/JSEN.2013.2277656.CrossRefGoogle Scholar
  28. 28.
    Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Networks, 11(8), 2661–2674.  https://doi.org/10.1016/j.adhoc.2013.04.014.CrossRefGoogle Scholar
  29. 29.
    Shelby, Z., & Bormann, C. (2011). 6LoWPAN: The wireless embedded internet. New York: Wiley.Google Scholar
  30. 30.
    Silva, A. A. A., Pontes, E., Zhou, F., & Kofuji, S. T. (2014). Grey model and polynomial regression for identifying malicious nodes in MANETs. In 2014 IEEE global communications conference. IEEE, pp. 162–168.  https://doi.org/10.1109/GLOCOM.2014.7036801.
  31. 31.
    Suthaharan, S., Alzahrani, M., Rajasegarar, S., Leckie, C., & Palaniswami, M. (2010). Labelled data collection for anomaly detection in wireless sensor networks. In 2010 sixth international conference on intelligent sensors, sensor networks and information processing. IEEE, pp. 269–274.  https://doi.org/10.1109/ISSNIP.2010.5706782.
  32. 32.
    Vasseur, J. P., & Dunkels, A. (2010). Interconnecting smart objects with IP: The next internet. New York: Elsevier.Google Scholar
  33. 33.
    Vučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., & Guizzetti, R. (2015). Oscar: Object security architecture for the internet of things. Ad Hoc Networks, 32, 3–16.  https://doi.org/10.1016/j.adhoc.2014.12.005. Internet of Things security and privacy: Design methods and optimization.
  34. 34.
    Xie, M., Hu, J., & Guo, S. (2015). Segment-based anomaly detection with approximated sample covariance matrix in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(2), 574–583.  https://doi.org/10.1109/TPDS.2014.2308198.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Pesquisas Tecnológicas - IPTSão PauloBrazil
  2. 2.Faculdade de Informática de Presidente Prudente - FIPPUniversidade do Oeste Paulista - UNOESTEPresidente Prudente, São PauloBrazil
  3. 3.Universidade Paulista - UNIPSão PauloBrazil
  4. 4.Escola PolitécnicaUniversidade de São Paulo - USPSão PauloBrazil

Personalised recommendations