DRADS: depth and reliability aware delay sensitive cooperative routing for underwater wireless sensor networks

  • Nadeem Javaid
  • Usman Shakeel
  • Ashfaq Ahmad
  • Nabil Alrajeh
  • Zahoor Ali Khan
  • Nadra Guizani
Article
  • 43 Downloads

Abstract

In this paper, depth and reliability aware delay sensitive (DRADS), interference aware DRADS (iDRADS) and cooperative iDRADS (Co-iDRADS) routing protocols are proposed for maximizing network good-put while minimizing end-to-end delay. We have introduced a new metric called depth threshold to minimize the number of hops between source and destination while ensuring successful packet delivery. Our interference aware and co-operative routing based algorithms select the best relay node at each hop. Extensive simulation results validate that the proposed routing techniques perform better than the selected existing ones in terms of good-put and energy cost of the network.

Keywords

Underwater wireless sensor networks Depth Cooperation Reliability Energy efficiency 

References

  1. 1.
    Javed, U., Suchara, M., He, J., & Rexford, J. (2009 January). Multipath protocol for delay-sensitive traffic. In 2009 first international communication systems and networks and workshops, IEEE, pp. 1–8.Google Scholar
  2. 2.
    Hsu, C. C., Liu, H. H., Gomez, J. L. G., & Chou, C. F. (2015). Delay-sensitive opportunistic routing for underwater sensor networks. IEEE Sensors Journal, 15(11), 6584–6591.CrossRefGoogle Scholar
  3. 3.
    Javaid, N., Jafri, M. R., Ahmed, S., Jamil, M., Khan, Z. A., Qasim, U., & Al-Saleh, S. S. (2015). Delay-sensitive routing schemes for underwater acoustic sensor networks. In International Journal of Distributed Sensor Networks, 2015, 13, Article ID 532676. doi:10.1155/2015/532676.
  4. 4.
    Yan, H., Shi, Z. J., & Cui, J. H. (2008). DBR: Depth-based routing for underwater sensor networks. In NETWORKING 2008 ad hoc and sensor networks, wireless networks, next generation internet, pp. 72–86. Berlin: Springer.Google Scholar
  5. 5.
    Wahid, A., Lee, S., Jeong, H. J., & Kim, D. (2011). Eedbr: Energy-efficient depth-based routing protocol for underwater wireless sensor networks. Advanced Computer Science and Information Technology (pp. 223–234). Berlin: Springer.Google Scholar
  6. 6.
    Jafri, M. R., Sandhu, M. M., Latif, K., Khan, Z. A., Yasar, A. U. H., & Javaid, N. (2014). Towards delay-sensitive routing in underwater wireless sensor networks. Procedia Computer Science, 37, 228–235.CrossRefGoogle Scholar
  7. 7.
    Kartha, J. J., & Jacob, L. (2015). Delay and lifetime performance of underwater wireless sensor networks with mobile element based data collection. International Journal of Distributed Sensor Networks, 2015, 1–22.Google Scholar
  8. 8.
    Zhang, S., Wang, Z., Liu, M., & Qiu, M. (2014). Energy-aware routing for delay-sensitive underwater wireless sensor networks. Science China Information Sciences, 57(10), 1–14.CrossRefGoogle Scholar
  9. 9.
    Ali, T., Jung, L. T., & Faye, I. (2014). End-to-end delay and energy efficient routing protocol for underwater wireless sensor networks. Wireless Personal Communications, 79(1), 339–361.CrossRefGoogle Scholar
  10. 10.
    Noh, Y., Wang, P., Lee, U., Torres, D., & Gerla, M., (2010 October). DOTS: A propagation delay-aware opportunistic MAC protocol for underwater sensor networks. In 2010 18th IEEE international conference on network protocols (ICNP), IEEE, pp. 183–192.Google Scholar
  11. 11.
    Noh, Y., Lee, U., Lee, S. R., Wang, P., Vieira, L., Cui, J., Gerla, M., & Kim, K. (2015). Pressure routing for underwater sensor networks. In INFOCOM, pp. 1676–1684, 2010.Google Scholar
  12. 12.
    Hegde, P., Meghashree, M., Bhat, S. S., & Krishna Kumar, L. (2015 June). A self adaptive MAC layer and routing layer framework for delay-tolerent underwater wireless sensor networks. In 2015 IEEE International Advance Computing Conference (IACC), IEEE, pp. 440–443.Google Scholar
  13. 13.
    Guo, X., Frater, M. R., & Ryan, M. J. (2007 May). A propagation-delay-tolerant collision avoidance protocol for underwater acoustic sensor networks. In OCEANS 2006-Asia Pacific, IEEE, pp. 1–6.Google Scholar
  14. 14.
    Llor, J., & Malumbres, M. P. (2012). Underwater wireless sensor networks: How do acoustic propagation models impact the performance of higher-level protocols? Sensors, 12(2), 1312–1335.CrossRefGoogle Scholar
  15. 15.
    Hung, L. L., & Luo, Y. J. (2016). Protocol to exploit waiting resources for UASNs. Sensors, 16(3), 333–338.CrossRefGoogle Scholar
  16. 16.
    Syed, A.A., Ye, W., & Heidemann, J. (2008 April). T-Lohi: A new class of MAC protocols for underwater acoustic sensor networks. In The 27th conference on computer communications INFOCOM 2008, pp. 1–9, IEEE, 13–18 April 2008.Google Scholar
  17. 17.
    Shakeel, U., Javaid, N., Ejaz, M., Zarar, S., & Hafeez, T. (2015 November). Improved interference aware EEDBR protocol for underwater wireless sensor networks. In 2015 10th international conference on broadband and wireless computing, communication and applications (BWCCA), IEEE, pp. 232–239.Google Scholar
  18. 18.
    Maqsood, H., Javaid, N., Zain-ul-Abidin, M., Ejaz, M., & Shakeel, U. (2015 November). Energy balanced interference aware energy efficient depth base routing protocol for UWSNs. In 2015 10th international conference on broadband and wireless computing, communication and applications (BWCCA), IEEE, pp. 13–19.Google Scholar
  19. 19.
    Shashaj, A., Petroccia, R., & Petrioli, C., (2014 September). Energy efficient interference-aware routing and scheduling in underwater sensor networks. In Oceans-St. John’s, IEEE, pp. 1–8.Google Scholar
  20. 20.
    Javaid, N., Jafri, M. R., Khan, Z. A., Qasim, U., Alghamdi, T. A., & Ali, M. (2014). Iamctd: Improved adaptive mobility of courier nodes in threshold-optimized dbr protocol for underwater wireless sensor networks’. International Journal of Distributed Sensor Networks, 2014, 1–12.Google Scholar
  21. 21.
    Umar, A., Javaid, N., Ahmad, A., Khan, Z. A., Qasim, U., Alrajeh, N., et al. (2015). DEADS: Depth and energy aware dominating set based algorithm for cooperative routing along with sink mobility in underwater WSNs. Sensors, 15(6), 14458–14486.CrossRefGoogle Scholar
  22. 22.
    Mansourkiaie, F., & Ahmed, M. H. (2015). Joint cooperative routing and power allocation for collision minimization in wireless sensor networks with multiple flows. IEEE Wireless Communications Letters, 4(1), 6–9.CrossRefGoogle Scholar
  23. 23.
    Tan, D. D., & Kim, D. S. (2014). Cooperative transmission scheme for multi-hop underwater acoustic sensor networks. International Journal of Communication Networks and Distributed Systems, 14(1), 1–18.CrossRefGoogle Scholar
  24. 24.
    Ikki, S. S., & Ahmed, M. H. (2011). Performance analysis of incremental-relaying cooperative-diversity networks over Rayleigh fading channels. IET Communications, 5(3), 337–349.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Diamant, R., Casari, P., & Zorzi, M. (2016). A TDMA-based MAC protocol exploiting the near-far effect in underwater acoustic networks. In MTS/IEEE OCEANS, pp. 1–5, 10–13 April 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Biomedical Technology Department, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Computer Information ScienceHigher Colleges of TechnologyFujairahUAE
  4. 4.Department of ECEPurdue UniversityWest LafayetteUSA

Personalised recommendations