Skip to main content

Connectivity of cognitive radio ad hoc networks with directional antennas

Abstract

In cognitive radio ad hoc networks, omni-directional antennas are typically used at both primary users (PUs) and secondary users (SUs), which can cause high interference. We name such cognitive radio ad hoc networks with omni-directional antennas as OMN-CRAHNs. Different from omni-directional antennas, directional antennas can concentrate the transmission on desired directions and can consequently reduce interference in undesired directions. In this paper, we investigate both the local connectivity and the overall connectivity of cognitive radio ad hoc networks with directional antennas (DIR-CRAHNs), in which both PUs and SUs are equipped with directional antennas. In particular, we establish a theoretical framework to analyze both the probability of node isolation and the probability of connectivity of DIR-CRAHNs and OMN-CRAHNs. Our analytical results show that DIR-CRAHNs can have higher connectivity than OMN-CRAHNs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    Note that each SU in our DIR-CRAHNs is equipped with a single directional antenna, which can arbitrarily switch its antenna direction forward or backward. It can be easily achieved by Switched Beam antenna or Adaptive Array antenna [32].

References

  1. 1.

    Akyildiz, I., Lee, W. Y., & Chowdhury, K. (2009). CRAHNs: Cognitive radio ad hoc network. Ad Hoc Network, 7(5), 810–836.

    Article  Google Scholar 

  2. 2.

    Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.

    Article  Google Scholar 

  3. 3.

    Ao, W. C., Cheng, S. M., & Chen, K. C. (2012). Connectivity of multiple cooperative cognitive radio ad hoc networks. IEEE Journal on Selected Areas in Communications, 30(2), 263–270.

    Article  Google Scholar 

  4. 4.

    Balanis, C. A. (2005). Antenna theory: Analysis and design (3rd ed.). New York: Wiley.

    Google Scholar 

  5. 5.

    Bettstetter, C. (2004). On the connectivity of ad hoc networks. The Computer Journal, 47(4), 432–447.

    Article  Google Scholar 

  6. 6.

    Bettstetter, C., Hartmann, C., & Moser, C. (2005). How does randomized beamforming improve the connectivity of ad hoc networks. In: Proceedings of IEEE ICC.

  7. 7.

    Chau, C. K., Chen, M., & Liew, S. C. (2011). Capacity of large-scale CSMA wireless networks. IEEE/ACM Transactions on Networking, 19(3), 893–906.

    Article  Google Scholar 

  8. 8.

    Dai, H. N., Ng, K. W., Wong, R. C. W., & Wu, M. Y. (2008). On the capacity of multi-channel wireless networks using directional antennas. In: Proceedings of IEEE INFOCOM.

  9. 9.

    Dai, H. N., Ng, K. W., Li, M., & Wu, M. Y. (2013). An overview of using directional antennas in wireless networks. International Journal of Communication Systems (Wiley), 26(4), 413–448.

    Article  Google Scholar 

  10. 10.

    Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.

    Article  Google Scholar 

  11. 11.

    Dung, L. T., & An, B. (2014). On the analysis of network connectivity in cognitive radio ad-hoc networks. In: 2014 International Symposium on Computer, Consumer and Control (pp. 1087–1090).

  12. 12.

    FC Commission (2002, November). Spectrum policy task force report. In: Proceedings of the 2nd International VLDB Workshop on Data Management for Sensor Networks, 02-135.

  13. 13.

    Fu, L., Liu, Z., Nie, D., & Wang, X. (2012). K-connectivity of cognitive radio networks. Proceedings of the IEEE ICC, 57(7), 83–87.

    Google Scholar 

  14. 14.

    Gao, F., Zhang, R., Liang, Y. C., & Wang, X. (2010). Design of learning-based mimo cognitive radio systems. IEEE Transactions on Vehicular Technology, 59(4), 1707–1720.

    Article  Google Scholar 

  15. 15.

    Georgiou, O., Wang, S., Bocus, M. Z., Dettmann, C. P., & Coon, J. P. (2015). Directional antennas improve the link-connectivity of interference limited ad hoc networks. In IEEE PIMRC.

  16. 16.

    Goldsmith, A., Jafar, S., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  17. 17.

    Gupta, P., & Kumar, P. R. (1998). Critical power for asymptotic connectivity in wireless networks. In Stochastic analysis, control, optimization and applications: A volume in honor of W. H. Fleming (pp. 547–566).

    Chapter  Google Scholar 

  18. 18.

    Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive radio wireless sensor networks: Applications, challenges and research trends. Sensors, 13(9), 11196–11228.

    Article  Google Scholar 

  19. 19.

    Kiese, M., Hartmann, C., & Vilzmann, R. (2009). Optimality bounds of the connectivity of ad hoc networks with beam forming antennas. In IEEE GLOBECOM.

  20. 20.

    Korakis, T., Jakllari, G., & Tassiulas, L. (2003). A MAC protocol for full exploitation of directional antennas in ad-hoc wireless networks. In Proceedings of ACM MobiHoc.

  21. 21.

    Lee, C. H., & Haenggi, M. (2012). Interference and outage in poisson cognitive networks. IEEE Transactions on Wireless Communications, 11(4), 1392–1401.

    Article  Google Scholar 

  22. 22.

    Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.

    Article  Google Scholar 

  23. 23.

    Lee, W. Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.

    Article  Google Scholar 

  24. 24.

    Li, P., Zhang, C., & Fang, Y. (2011). The capacity of wireless ad hoc networks using directional antennas. IEEE Transactions on Mobile Computing, 10(10), 1374–1387.

    Article  Google Scholar 

  25. 25.

    Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.

    Article  Google Scholar 

  26. 26.

    Liu, J., Zhang, Q., Zhang, Y., Wei, Z., & Ma, S. (2013). Connectivity of two nodes in cognitive radio ad hoc networks. In Proceedings of the IEEE WCNC.

  27. 27.

    Liu, P., Berry, R. A., Honig, M. L., & Jordan, S. (2007). Packet-based power allocation for forward link data traffic. IEEE Transactions on Wireless Communications, 6(8), 2894–2903.

    Article  Google Scholar 

  28. 28.

    Liu, Y., Wang, G., Xiao, M., & Zhong, Z. (2016). Spectrum sensing and throughput analysis for cognitive two-way relay networks with multiple transmit powers. IEEE Journal on Selected Areas in Communications, 34(11), 3038–3047.

    Article  Google Scholar 

  29. 29.

    Morandi, D., Altman, E., & Alfano, G. (2008). The impact of channel randomness on coverage and connectivity of ad hoc and sensor networks. IEEE Transactions on Wireless Commnunication, 7(3), 1062–1072.

    Article  Google Scholar 

  30. 30.

    Nitsche, T., Cordeiro, C., Flores, A., Knightly, E. W., Perahia, E., & Widmer, J. C. (2014). IEEE 802.11ad: Directional 60 GHz communication for multi-gigabit-per-second Wi-Fi. IEEE Communications Magazine, 52(12), 132–141.

    Article  Google Scholar 

  31. 31.

    Ramanathan, R. (2001). On the performance of ad hoc networks with beamforming antennas. In Proceedings of ACM MobiHoc.

  32. 32.

    Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE JSAC, 23(3), 496–506.

    Google Scholar 

  33. 33.

    Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  34. 34.

    Rappaport, T. S. (2002). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, N.J.: Prentice Hall PTR.

    MATH  Google Scholar 

  35. 35.

    Ren, W., Zhao, Q., & Swami, A. (2011). Connectivity of heterogeneous wireless networks. IEEE Transactions on Information Theory, 57(7), 4315–4332.

    MathSciNet  Article  Google Scholar 

  36. 36.

    Ross, S. M. (2009). Introduction to probability models (10th ed.). Cambridge: Academic press.

    Google Scholar 

  37. 37.

    Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network & Computer Applications, 43(1), 1–16.

    Article  Google Scholar 

  38. 38.

    Takai, M., Martin, J., Bagrodia, R., & Ren, A. (2002). Directional virtual carrier sensing for directional antennas in mobile ad hoc networks. In Proceedings of ACM MobiHoc.

  39. 39.

    Wang, Y., Dai, H. N., Wang, Q., Li, X., Zhao, Q., & Cheang, C. F. (2015). Local Connectivity of Wireless Networks with Directional Antennas. In IEEE PIMRC.

  40. 40.

    Wang, Y., Dai, H. N., Wang, Q., Huang, H., Zheng, Z., & Li, J. (2016). On local connectivity of cognitive radio ad hoc networks with directional antennas. In 15th IEEE International Conference on Communication Systems (ICCS), Shenzhen, China.

  41. 41.

    Wei, Z., Liu, J., Feng, Z., Li, W., & Gulliver, T. (2013). The asymptotic connectivity of random cognitive radio networks. In IEEE Wireless Communications and Networking Conference (WCNC).

  42. 42.

    Wei, Z., Feng, Z., Zhang, Q., Li, W., & Gulliver, T. (2014). The asymptotic throughput and connectivity of cognitive radio networks with directional transmission. Journal of Communications and Networks, 16(2), 227–237.

    Article  Google Scholar 

  43. 43.

    Wu, Y., Zhang, L., Wu, Y., & Niu, Z. (2009). Motion-indicated interest dissemination with directional antennas for wireless sensor networks with mobile sinks. IEEE Transaction on Vehicular Technology, 58(2), 977–989.

    Article  Google Scholar 

  44. 44.

    Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive mimo cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.

    Article  Google Scholar 

  45. 45.

    Yang, G., He, S., & Shi, Z. (2017). Leveraging crowdsourcing for efficient malicious users detection in large-scale social networks. IEEE Internet of Things Journal, 4(2), 330–339.

    Article  Google Scholar 

  46. 46.

    Yang, G., He, S., Shi, Z., & Chen, J. (2017). Promoting cooperation by the social incentive mechanism in mobile crowdsensing. IEEE Communications Magazine, 55(3), 86–92.

    Article  Google Scholar 

  47. 47.

    Yi, S., Pei, Y., & Kalyanaraman, S. (2003). On the capacity improvement of ad hoc wireless networks using directional antennas. In Proceedings of ACM MobiHoc.

  48. 48.

    Zhai, D., Sheng, M., Wang, X., & Zhang, Y. (2014). Local Connectivity of Cognitive Radio Ad Hoc Networks. In IEEE GLOBECOM.

  49. 49.

    Zhang, Z. (2005). Pure directional transmission and reception algorithms in wireless ad hoc networks with directional antennas. In IEEE ICC.

  50. 50.

    Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Article  Google Scholar 

  51. 51.

    Zhou, X., Durrani, S., & Jones, H. (2009). Connectivity analysis of wirelss ad hoc networks with beamforming. IEEE Transactions on Vehicular Technology, 58(9), 5247–5257.

    Article  Google Scholar 

  52. 52.

    Zhu, Y., Zhu, Y., Zhao, B. Y., & Zheng, H. (2015). Reusing 60 GHz radios for mobile radar imaging. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. ACM MobiCom.

Download references

Acknowledgements

The work described in this paper was supported by Macao Science and Technology Development Fund under Grant No. 096/2013/A3. The authors would like to thank anonymous reviewers and editors for their constructive comments. The authors would like to express their appreciation for Gordon K.-T. Hon for his thoughtful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-Ning Dai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Q., Dai, HN. et al. Connectivity of cognitive radio ad hoc networks with directional antennas. Wireless Netw 24, 3045–3061 (2018). https://doi.org/10.1007/s11276-017-1523-0

Download citation

Keywords

  • Connectivity
  • Cognitive radio ad hoc network
  • Directional antennas