Skip to main content
Log in

Multi-metric geographic routing for vehicular ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Maintaining durable connectivity during data forwarding in Vehicular Ad hoc Networks has witnessed significant attention in the past few decades with the aim of supporting most modern applications of intelligent transportation systems. Various techniques for next hop vehicle selection have been suggested in the literature. Most of these techniques are based on selection of next hop vehicles from fixed forwarding region with two or three metrics including speed, distance and direction, and avoid many other parameters of urban environments. In this context, this paper proposes a Multi-metric Geographic Routing (M-GEDIR) technique for next hop selection. It selects next hop vehicles from dynamic forwarding regions, and considers major parameters of urban environments including, received signal strength, future position of vehicles, and critical area vehicles at the border of transmission range, apart from speed, distance and direction. The performance of M-GEDIR is evaluated carrying out simulations on realistic vehicular traffic environments. In the comparative performance evaluation, analysis of results highlight the benefit of the proposed geographic routing as compared to the state-of-the-art routing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C. T., et al. (2016). Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4, 5356–5373.

    Article  Google Scholar 

  2. Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., et al. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—A case study. IEEE Sensors Journal, 16(23), 8649–8664.

    Google Scholar 

  3. Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., & Cosenza, S. (2009). Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 47(11), 84–95.

    Article  Google Scholar 

  4. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular Ad Hoc network. Journal of Network and Computer Applications, 37, 380–392.

    Article  Google Scholar 

  5. Dar, K., Bakhouya, M., Gaber, J., Wack, M., & Lorenz, P. (2010). Wireless communication technologies for ITS applications (topics in automotive networking). IEEE Communications Magazine, 48(5), 156–162.

    Article  Google Scholar 

  6. Tonguz, O. K., & Boban, M. (2010). Multiplayer games over vehicular ad-hoc networks: A new application. Ad Hoc Networks, 8(1), 531–543.

    Article  Google Scholar 

  7. Cao, Y., Wang, T., Kaiwartya, O., Min, G., Ahmad, N., & Abdullah, A. H. (2016). An EV charging management system concerning drivers’ trip duration and mobility uncertainty. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP(99), 1–12. doi:10.1109/TSMC.2016.2613600.

    Google Scholar 

  8. Sheet, D. K., Kaiwartya, O., Abdullah, A. H., & Hassan, A. N. (2015). Location information verification cum security using TBM in geocast routing. Procedia Computer Science, 70, 219–225.

    Article  Google Scholar 

  9. Kaiwartya, O., Kumar, S., Lobiyal, D. K., Tiwari, P. K., Abdullah, A. H., & Hassan, A. N. (2015). Multiobjective dynamic vehicle routing problem and time seed based solution using particle swarm optimization. Journal of Sensors, 2015, 189832. doi:10.1155/2015/189832.

    Article  Google Scholar 

  10. Stanford University. (2011). New wireless technology developed for faster, more efficient networks. ScienceDaily. www.sciencedaily.com/releases/2011/02/110214155503.htm.

  11. US Department of Transportation. Research at National Highway Traffic Safety Administration (NHTSA). http://www.nhtsa.gov/Research/.

  12. Armstrong, L., & Fisher, W. IEEE 802.11P Wireless access for vehicular environment. Draft Standard. http://grouper.ieee.org/groups/802/11/. Accessed 16 Aug 2016.

  13. Santos, R. A., Edwards, A., Edwards, R. M., & Seed, N. L. (2005). Performance evaluation of routing protocols in vehicular ad-hoc networks. International Journal of Ad Hoc and Ubiquitous Computing, 1(1–2), 80–91.

    Article  Google Scholar 

  14. Liu, G., Lee, B. S., Seet, B. C., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A routing strategy for metropolis vehicular communications. In H.-K. Kahng (Ed.), Information networking. Networking technologies for broadband and mobile networks (pp. 134–143). Berlin: Springer.

    Chapter  Google Scholar 

  15. Wang, S. Y., Lin, C. C., & Chou, C. L. (2005). A practical routing protocol for vehicle-formed mobile ad hoc networks on the roads. In Intelligent transportation systems, 2005. Proceedings. IEEE (pp. 161–166).

  16. Darwish, T., & Bakar, K. A. (2016). Traffic aware routing in vehicular ad hoc networks: Characteristics and challenges. Telecommunication Systems, 61, 489–513.

    Article  Google Scholar 

  17. Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications Surveys & Tutorials, 15(2), 654–677.

    Article  Google Scholar 

  18. Kaiwartya, O., & Kumar, S. (2015). Guaranteed geocast routing protocol for vehicular adhoc networks in highway traffic environment. Wireless Personal Communications, 83(4), 2657–2682.

    Article  Google Scholar 

  19. Stojmenovic, I., Ruhil, A. P., & Lobiyal, D. K. (2006). Voronoi diagram and convex hull based geocasting and routing in wireless networks. Wireless Communications and Mobile Computing, 6(2), 247–258.

    Article  Google Scholar 

  20. Raw, R. S., & Das, S. (2013). Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wireless Personal Communications, 68(1), 65–78.

    Article  Google Scholar 

  21. Singh, K., Batish, S., Jindal, A., & Singh, A. (2014). Trusted border-node based most forward within radius routing protocol. International Journal of Advanced Research in Computer Science, 5(6), 216–230.

    Google Scholar 

  22. Kaiwartya, O., Kumar, S., Lobiyal, D. K., Abdullah, A. H., & Hassan, A. N. (2014). Performance improvement in geographic routing for vehicular Ad Hoc networks. Sensors, 14(12), 22342–22371.

    Article  Google Scholar 

  23. Qureshi, K. N., Abdullah, A. H., & Lloret, J. (2016). Road perception based geographical routing protocol for vehicular ad hoc networks. International Journal of Distributed Sensor Networks. doi:10.1155/2016/2617480.

  24. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 243–254). ACM.

  25. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Intelligent vehicles symposium, 2003. Proceedings. IEEE (pp. 156–161). IEEE.

  26. Tian, J., Han, L., & Rothermel, K. (2003). Spatially aware packet routing for mobile ad hoc inter-vehicle radio networks. In Intelligent transportation systems, 2003. Proceedings. 2003 IEEE (Vol. 2, pp. 1546–1551). IEEE.

  27. Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In Networking 2004 (pp. 989–999). Berlin: Springer.

  28. Gong, J., Xu, C. Z., & Holle, J. (2007). Predictive directional greedy routing in vehicular ad hoc networks. In 27th International conference on distributed computing systems workshops, 2007. ICDCSW’07 (pp. 2–2). IEEE.

  29. Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2007). An infrastructure-free traffic information system for vehicular networks. In Vehicular technology conference, 2007. VTC-2007 fall. 2007 IEEE 66th (pp. 2086–2090). IEEE.

  30. Bilal, S. M., Madani, S. A., & Khan, I. A. (2011). Enhanced junction selection mechanism for routing protocol in VANETs. The International Arab Journal of Information Technology, 8(4), 422–429.

    Google Scholar 

  31. Alsharif, N., Céspedes, S., & Shen, X. (2013). iCAR: Intersection-based connectivity aware routing in vehicular ad hoc networks. In IEEE international conference on communications (ICC) (pp. 1736–1741). IEEE.

  32. Darwish, T., & Bakar, K. A. (2016). Lightweight intersection-based traffic aware routing in urban vehicular networks. Computer Communications, 87, 60–75.

    Article  Google Scholar 

  33. Brahmi, N., Boussedjra, M., Mouzna, J., & Bayart, M. (2009). Adaptative movement aware routing for vehicular ad hoc networks. In Proceedings of the international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 1310–1315). ACM.

  34. Tu, H., Peng, L., Li, H., & Liu, F. (2014). GSPR-MV: A routing protocol based on motion vector for VANET. In 2014 12th International conference on signal processing (ICSP) (pp. 2354–2359). IEEE.

  35. Lee, S., & Lim, A. (2013). An empirical study on ad hoc performance of DSRC and wi-fi vehicular communications. International Journal of Distributed Sensor Networks. doi:10.1155/2013/482695.

  36. Hassan, A. N., Kaiwartya, O., Abdullah, A. H., Sheet, D. K., & Prakash, S. (2016). Geometry based inter vehicle distance estimation for instantaneous GPS failure in VANETs (p. 72). ACM.

  37. Schmidt, R. K., Kloiber, B., Schüttler, F., & Strang, T. (2011). Degradation of communication range in VANETs caused by interference 2.0-real-world experiment. In Communication technologies for vehicles (pp. 176–188). Berlin: Springer.

  38. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  39. Sheet, D. K., Kaiwartya, O., Abdullah, A. H., Cao, Y., Hassan, A. N., & Kumar, S. (2017). Location information verification using transferable belief model for geographic routing in vehicular ad hoc networks. IET Intelligent Transport Systems, 11, 53–60.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at University Teknologi Malaysia (UTM) under VOT NUMBER: Q.J130000.2528.14H81.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.N., Abdullah, A.H., Kaiwartya, O. et al. Multi-metric geographic routing for vehicular ad hoc networks. Wireless Netw 24, 2763–2779 (2018). https://doi.org/10.1007/s11276-017-1502-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1502-5

Keywords

Navigation