Skip to main content

An energy-efficient overlapping clustering protocol in WSNs

Abstract

The limited battery power supply system makes energy efficiency a major concern in WSNs. An effective method is to organize the sensors into clusters to avoid redundancy and long-distance data transmission in the network. In traditional clustering methods, the cluster heads not only serve as leaders to collect the coming data from their cluster members but also play the roles of relay nodes to transmit the aggregated data to the sink node simultaneously, such that CHs consume much more energy than ordinary nodes. From the perspective of energy balancing, it is better to select the different nodes as CHs and relay nodes. In this paper, an energy-efficient overlapping clustering protocol is proposed, which assigns the boundary nodes in the overlapping area to relay the aggregated data to the sink node. Thereby the relay nodes are uniformly distributed near the CHs. Comparisons with LEACH and SEECH protocols show that the proposed protocol achieves better performance in terms of lifetime and load-balancing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52, 2292–2330.

    Article  Google Scholar 

  3. Abdelaal, M., & Theel, O. (2014). Recent energy-preservation endeavours for longlife wireless sensor networks: A concise survey. In IEEE 7th conference onwireless and optical communications networks (WOCN) (pp. 1–7).

  4. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Article  Google Scholar 

  5. Keskin, M. E., Altanel, I. K., Aras, N., & Ersoy, C. (2014). Wireless sensor network lifetime maximization by optimal sensor deployment, activity scheduling, data routing and sink mobility. Ad Hoc Networks, 17(6), 18–36.

    Article  Google Scholar 

  6. Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNs): A comprehensive overview. European Transactions on Telecommunications, 22(4), 151–167.

    Article  Google Scholar 

  7. Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.

    Article  Google Scholar 

  8. Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30, 2826–2841.

    Article  Google Scholar 

  9. Liu, A. F., Zhang, P. H., & Chen, Z. G. (2011). Theoretical analysis of the lifetime and energy hole in cluster based wireless sensor networks. Journal of Parallel and Distributed Computing, 71(10), 1327–1355.

    Article  MATH  Google Scholar 

  10. Mhatre, V., & Rosenberg, C. (2004). Design guidelines for wireless sensor networks: Communication, clustering and aggregation. Ad Hoc Networks, 2, 45–63.

    Article  Google Scholar 

  11. Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183, 117–131.

    Article  Google Scholar 

  12. Chen, G. H., Li, C. F., Ye, M., & Wu, J. (2009). An unequal cluster-head routing protocols in wireless sensor networks. Wireless Networks, 15, 193–207.

    Article  Google Scholar 

  13. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  14. Liu, Z. X., Zheng, Q. C., X, L., & Guan, X. P. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780–790.

    Article  Google Scholar 

  15. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Second international workshop on sensor and actor network protocols and applications (SANPA 2004).

  16. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29(12), 2230–2237.

    Article  Google Scholar 

  17. Zhou, H., Wu, Y., Hu, Y., & Xie, G. Z. (2010). A novel stable selection and reliable transmission protocol for clustered heterogeneous wireless sensor networks. Computer Communications, 33(15), 1843–1849.

    Article  Google Scholar 

  18. Zhen, H., Li, Y., & Zhang, G. J. (2013). Efficient and dynamic clustering scheme for heterogeneous multi-level wireless sensor networks. Acta Automatica Sinica, 39(4), 454–460.

    Article  Google Scholar 

  19. Xu, K. N., Hassanein, H., Takahara, G., & Wang, Q. H. (2010). Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing, 9(2), 145–159.

    Article  Google Scholar 

  20. Wang, F., Wang, D., & Liu, J. C. (2011). Traffic-aware relay node deployment: Maximizing lifetime for data collection wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(8), 1415–1423.

    Article  Google Scholar 

  21. Cui, Q., Yang, X. J., Tao, X. F., & Zhang, P. (2014). Optimal energy-efficient relay deployment for the bidirectional relay transmission schemes. IEEE Transactions on Vehicular Technology, 63(6), 2625–2641.

    Article  Google Scholar 

  22. Chang, J. Y., & Lin, Y. S. (2014). A clustering deployment scheme for base stations and relay stations in multi-hop relay networks. Computers and Electrical Engineering, 40, 407–420.

    Article  Google Scholar 

  23. Liao, Y., Qi, H., & Li, W. Q. (2013). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensor Networks, 13(5), 1056–1498.

    Google Scholar 

  24. Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.

    Article  Google Scholar 

  25. Chanak, P., Banerjee, I., & Rahaman, H. (2015). Load management scheme for energy holes reduction in wireless sensor networks. Computers and Electrical Engineering, 48, 1–15.

    Article  Google Scholar 

  26. Liu, T., Li, Q. R., & Liang, P. (2012). An energy-balancing clustering approach for gradient-based routing in wireless sensor networks. Computer Communications, 35, 2150–2161.

    Article  Google Scholar 

  27. Baranidharan, B., & Santhi, B. (2016). DUCF: Distributed load balancing unequal clustering in wireless sensor networks using Fuzzy approach. Applied Soft Computing, 40, 495–506.

    Article  Google Scholar 

  28. Tarhani, M., Kavian, Y., & Siavoshi, S. (2014). SEECH: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sensor Journal, 14(11), 3944–3954.

    Article  Google Scholar 

  29. Liu X. F., et al. (2011). Energy efficient clustering for WSN-based structural health monitoring. In IEEE INFOCOM (pp. 2768–2776).

  30. Ammar, I., Miskeen, G., & Awan, I. (2013). Overlapped schedules with centralized clustering for wireless sensor networks. In IEEE 27th international conference on advanced information networking and applications (pp. 33–40).

  31. Kalyanasundaram, B., & Younis, M. (2013). Using mobile data collectors to federate clusters of disjoint sensor network segments. In IEEE ICC-Ad-hoc and sensor networking symposium (pp. 1496–1500).

  32. Dai, G. Y., et al. (2015). A novel distributed clustering-based MDS algorithm for nodes localization in WSNs. International Journal of Grid Distribution Computing, 8(2), 79–90.

    Article  Google Scholar 

  33. Youssef, M. A., Youssef, A., & Younis, F. (2009). Overlapping multihop clustering for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(12), 1844–1856.

    Article  Google Scholar 

  34. Amini, A., Vahdatpour, A., Xu, W. Y., Gerla, M., & Sarrafzadeh, M. (2012). Cluster size optimization in sensor networks with decentralized cluster-based protocols. Computer Communications, 35, 207–220.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) from China (61273073, 61374107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugang Niu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Niu, Y. An energy-efficient overlapping clustering protocol in WSNs. Wireless Netw 24, 1775–1791 (2018). https://doi.org/10.1007/s11276-016-1434-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1434-5

Keywords

  • Clustering
  • Overlapping region
  • Energy efficiency
  • Load balancing