Wireless Networks

, Volume 24, Issue 5, pp 1729–1738 | Cite as

Random network coding in MIMO system

  • Li Chen
  • Yuehong Gao
  • Xin Zhang
  • Dacheng Yang


Random network coding (RNC) has emerged as a promising technology. In this paper, we seek to answer the question that how RNC benefits cellular systems. A novel RNC-based space–time code (STC) scheme is proposed for the data transmission in MIMO system. In this scheme, RNC is integrated with the STC design for MIMO system. And then, the improved diversity order and multiplexing gain of the RNC-based STC scheme are analyzed and derived. This RNC-based STC scheme can also have benefit of RNC on some practical applications. After that, a general RNC-based STC protocol which describes the data transmission flow in practical system is designed for MIMO transmission. Finally, the performance of RNC-based STC scheme is evaluated through both link-level and system-level simulations. The simulation results show that RNC can provide extra diversity gain, multiplexing gain, or reduce the decoding complexity, and improve the bandwidth efficiency and user fairness in cellular system with MIMO.


5G Random network coding (RNC) MIMO Diversity order Multiplexing gain STC 


  1. 1.
    Bslcakei, H., Gesbert, D., & Paulraj, A. J. (2002). On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications, 50(2), 225–234.CrossRefGoogle Scholar
  2. 2.
    Foschini, G. J. (1996). Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.CrossRefGoogle Scholar
  3. 3.
    Telatar, I. E. (1999). Capacity of multi-antenna gaussian channels. European Transactions on Telecommunications, 10, 585–595.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space–time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Guey, J.-C., Fitz, M. P., Bell, M. R., & Kuo, W.-Y. (2002). Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels. IEEE Transactions on Communications, 47(4), 527–537.CrossRefGoogle Scholar
  6. 6.
    Alamouti, S. M. (1998). A simple transmitter diversity scheme for wireless communications. IEEE Journal on Selected Areas in Communications, 16, 1451–1458.CrossRefGoogle Scholar
  7. 7.
    Zheng, L., & Tse, D. (2003). Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.CrossRefzbMATHGoogle Scholar
  8. 8.
    Heath, R., Jr., & Paulraj A. (2000). Switching between multiplexing and diversity based on constellation distance. In Proceedings of Allerton conference on communication, control and computing (pp. 203–206).Google Scholar
  9. 9.
    Sellathurai, M., & Haykin, S. (2000). Turbo-BLAST for high-speed wireless communications. In Proceedings of WCNC 2000, Chicago (Vol. 1, pp. 315–321).Google Scholar
  10. 10.
    Sellathurai, M., & Haykin, S. (2002). Turbo-BLAST for wireless communications: Theory and experiments. IEEE Transactions on Signal Processing, 50, 2538–2546.CrossRefGoogle Scholar
  11. 11.
    Nguyen, T. D., El-Hajjar, M., Yang, L. L., & Hanzo, L. (2008). A systematic Luby transform coded V-BLAST system. In Proceedings of ICC’08, Beijing, China (pp. 775–779).Google Scholar
  12. 12.
    Ahlswede, R., Cai, N., Li, S.-Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ho, T., Koetter, R., Medard, M., Karger, D. R., & Effros, M. (2003). The benefits of coding over routing in a randomized setting. In Proceedings of ISIT, Yokohama, Japan (pp. 442)Google Scholar
  14. 14.
    Chen, Y., Kishore, S., & Li, J. (2006). Wireless diversity through network coding. In Proceedings of WCNC, Las Vegas (Vol. 3, pp. 1681–1686).Google Scholar
  15. 15.
    Chou, P., Wu, Y., & Jain, K. (2003). Practical network coding. In Proceedings of Allerton conference on communication, control and computing. Google Scholar
  16. 16.
    Jin, J., Li, B., & Kong, T. (2008). Is random network coding helpful in WiMAX. In Proceedings of INFOCOM 2008, Phoenix, AZ (pp. 2162–2170)Google Scholar
  17. 17.
    Zhang, H., Xing, H., Cheng, J., Nallanathan, A., & Leung, V. (2015). Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Transactions on Industrial Informatics, 12(5), 1.Google Scholar
  18. 18.
    Fasolo, E., Rossetto, F., & Zorzi, M. (2008). Network coding meets MIMO. In: IEEE NetCod 2008. Hong Kong, China (pp. 1–6).Google Scholar
  19. 19.
    van Zelst, A., van Nee, R., & Awater, G. A. (2001). Turbo-BLAST and its performance. In Proceedings of IEEE VTC, Rhodes (Vol. 2, pp. 1282–1286).Google Scholar
  20. 20.
    Sellathurai, M., & Haykin, S. (2002). Turbo-BLAST for wireless communications: Theory and experiments. IEEE Transactions on Signal Processing, 50, 2538–2546.CrossRefGoogle Scholar
  21. 21.
    Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, L., Chen, W., et al. (2011). System-level simulation methodology and platform for mobile cellular systems. IEEE Communications Magazine, 49(7), 148–155.CrossRefGoogle Scholar
  23. 23.
    3GPP TS 36.814 v10.0.0. (2010). Further advancements for E-UTRA, Physical layer aspects.Google Scholar
  24. 24.
    Sang, A., Wang, X., Madihian, M., & Gitlin, R. D. (2006). A flexible downlink scheduling scheme in cellular packet data systems. IEEE Transactions on Wireless Communications, 5(3), 568–577.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Wireless Theories and Technologies (WT&T)Beijing University of Posts and Telecommunications (BUPT)BeijingChina

Personalised recommendations