Advertisement

Wireless Networks

, Volume 24, Issue 5, pp 1451–1475 | Cite as

A survey of clustering algorithms for cognitive radio ad hoc networks

  • Mahassin Mohamed Ahmed Osman
  • Sharifah Kamilah Syed-Yusof
  • Nik Noordini Nik Abd Malik
  • Suleiman Zubair
Article

Abstract

The dynamic spectrum nature of cognitive radio challenges the connectivity and the stability of cognitive radio ad hoc networks (CRAHNs). Clustering is considered as an appropriate technique to overcome these issues. Various algorithms for clustering formation in CRAHN have been proposed, in which different system models and metrics are considered. This paper introduces an extensive survey of the most important published algorithms. This survey classifies the proposed algorithms based on their objectives. Moreover, it presents a detailed description of their techniques, evaluations of their performance, and discussion of the features and shortcomings of each algorithm. Furthermore, it provides and discusses the open issues for future research.

Keywords

Cognitive radio Ad hoc network Clustering 

References

  1. 1.
    Federal Communications Commission. (2002, November). Spectrum policy tasks force report. ET Docket No. 02-135.Google Scholar
  2. 2.
    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATHGoogle Scholar
  3. 3.
    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.CrossRefGoogle Scholar
  5. 5.
    Chen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007, April). CogMesh: A cluster-based cognitive radio network. In 2007 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 168–178). IEEE.Google Scholar
  6. 6.
    Chinara, S., & Rath, S. K. (2009). A survey on one-hop clustering algorithms in mobile ad hoc networks. Journal of Network and Systems Management, 17(1–2), 183–207.CrossRefGoogle Scholar
  7. 7.
    Kawadia, V., & Kumar, P. R. (2003, March). Power control and clustering in ad hoc networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 1, pp. 459–469). IEEE.Google Scholar
  8. 8.
    Liu, C. H., Rong, B., & Cui, S. (2015). Optimal discrete power control in poisson-clustered ad hoc networks. IEEE Transactions on Wireless Communications, 14(1), 138–151.CrossRefGoogle Scholar
  9. 9.
    Ephremides, A., Wieselthier, J. E., & Baker, D. J. (1987). A design concept for reliable mobile radio networks with frequency hopping signaling. Proceedings of the IEEE, 75(1), 56–73.CrossRefGoogle Scholar
  10. 10.
    Basu, P., Khan, N., & Little, T. D. (2001, April). A mobility based metric for clustering in mobile ad hoc networks. In 2001 international conference on distributed computing systems workshop (pp. 413–418). IEEE.Google Scholar
  11. 11.
    Konstantopoulos, C., Gavalas, D., & Pantziou, G. (2008). Clustering in mobile ad hoc networks through neighborhood stability-based mobility prediction. Computer Networks, 52(9), 1797–1824.CrossRefMATHGoogle Scholar
  12. 12.
    Ni, M., Zhong, Z., & Zhao, D. (2011). MPBC: A mobility prediction-based clustering scheme for ad hoc networks. IEEE Transactions on Vehicular Technology, 60(9), 4549–4559.CrossRefGoogle Scholar
  13. 13.
    Hussein, A. H., Salem, A. O. A., & Yousef, S. (2008, June). A flexible weighted clustering algorithm based on battery power for mobile ad hoc networks. In 2008 IEEE international symposium on industrial electronics (pp. 2102–2107). IEEE.Google Scholar
  14. 14.
    Leu, J. J. Y., Tsai, M. H., Chiang, T. C., & Huang, Y. M. (2006, September). Adaptive power-aware clustering and multicasting protocol for mobile ad hoc networks. In International conference on ubiquitous intelligence and computing (pp. 331–340). Berlin, Heidelberg: Springer.Google Scholar
  15. 15.
    Fathi, A., & Taheri, H. (2010, July). Enhance Topology Control Protocol (ECEC) to conserve energy based clustering in wireless ad hoc networks. In 2010 3rd IEEE international conference on computer science and information technology (ICCSIT) (Vol. 9, pp. 356–360). IEEE.Google Scholar
  16. 16.
    Karaoglu, B., & Heinzelman, W. (2015). Cooperative load balancing and dynamic channel allocation for cluster-based mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(5), 951–963.CrossRefGoogle Scholar
  17. 17.
    Pandey, A., & Lim, J. S. (2010, May). Ctb-mac: Cluster-based tdma broadcast mac protocol for mobile ad-hoc network. In 2010 5th international conference on future information technology (pp. 1–6). IEEE.Google Scholar
  18. 18.
    Natesapillai, K., Palanisamy, V., & Duraiswamy, K. (2009). Reducing broadcast overhead using clustering based broadcast mechanism in mobile ad hoc network. Journal of Computer Science, 5(8), 548–556.CrossRefGoogle Scholar
  19. 19.
    Pathak, S., & Jain, S. (2016). A novel weight based clustering algorithm for routing in MANET. Wireless Networks, 22(8), 2695–2704.CrossRefGoogle Scholar
  20. 20.
    Kanakala, S., Ananthula, V. R., & Vempaty, P. (2014). Energy-efficient cluster based routing protocol in mobile ad hoc networks using network coding. Journal of Computer Networks and Communications, 2014, 351020. doi: 10.1155/2014/351020.Google Scholar
  21. 21.
    Kumar, R., Verma, P., & Singh, Y. (2013). Mobile ad hoc networks and it’s routing protocols. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 7(8), 1151–1160.Google Scholar
  22. 22.
    Liu, W., Nishiyama, H., Ansari, N., Yang, J., & Kato, N. (2013). Cluster-based certificate revocation with vindication capability for mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 24(2), 239–249.CrossRefGoogle Scholar
  23. 23.
    Jarang, M. R., & Nimbalkar, M. V. (2015, October). Implementation of cluster based certificate revocation in mobile ad hoc networks. In 2015 international conference on green computing and internet of things (ICGCIoT) (pp. 610–615). IEEE.Google Scholar
  24. 24.
    Hafeez, K. A., Zhao, L., Liao, Z., & Ma, B. N. W. (2012, June). A fuzzy-logic-based cluster head selection algorithm in VANETs. In 2012 IEEE international conference on communications (ICC) (pp. 203–207). IEEE.Google Scholar
  25. 25.
    Hassanabadi, B., Shea, C., Zhang, L., & Valaee, S. (2014). Clustering in vehicular ad hoc networks using affinity propagation. Ad Hoc Networks, 13, 535–548.CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Fang, M., Shi, S., Guo, W., & Zheng, X. (2015). Distributed multi-hop clustering algorithm for VANETs based on neighborhood follow. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–12.Google Scholar
  27. 27.
    Omar, H. A., Zhuang, W., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736.CrossRefGoogle Scholar
  28. 28.
    Bharati, S., & Zhuang, W. (2013). CAH-MAC: Cooperative ADHOC MAC for vehicular networks. IEEE Journal on Selected Areas in Communications, 31(9), 470–479.CrossRefGoogle Scholar
  29. 29.
    Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., & Saidane, L. A. (2015). TDMA-based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues. IEEE Communications Surveys & Tutorials, 17(4), 2461–2492.CrossRefGoogle Scholar
  30. 30.
    Bhaumik, M., DasGupta, S., & Saha, S. (2012). Affinity based clustering routing protocol for vehicular ad hoc networks. Procedia Engineering, 38, 673–679.CrossRefGoogle Scholar
  31. 31.
    Mohammed Nasr, M. M., Abdelgader, A. M. S., Wang, Z. G., & Shen, L. F. (2016). VANET clustering based routing protocol suitable for deserts. Sensors, 16(4), 478.CrossRefGoogle Scholar
  32. 32.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  33. 33.
    Lin, C., Wu, G., Xia, F., Li, M., Yao, L., & Pei, Z. (2012). Energy efficient ant colony algorithms for data aggregation in wireless sensor networks. Journal of Computer and System Sciences, 78(6), 1686–1702.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRefGoogle Scholar
  35. 35.
    Yu, J., Feng, L., Jia, L., Gu, X., & Yu, D. (2014). A local energy consumption prediction-based clustering protocol for wireless sensor networks. Sensors, 14(12), 23017–23040.CrossRefGoogle Scholar
  36. 36.
    Siavoshi, S., Kavian, Y. S., & Sharif, H. (2016). Load-balanced energy efficient clustering protocol for wireless sensor networks. IET Wireless Sensor Systems, 6(3), 67–73.CrossRefGoogle Scholar
  37. 37.
    Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Tan, R., Xing, G., Liu, B., Wang, J., & Jia, X. (2012). Exploiting data fusion to improve the coverage of wireless sensor networks. IEEE/ACM Transactions on Networking, 20(2), 450–462.CrossRefGoogle Scholar
  39. 39.
    Lin, C., Wu, G., Obaidat, M. S., & Yu, C. W. (2016). Clustering and splitting charging algorithms for large scaled wireless rechargeable sensor networks. Journal of Systems and Software, 113, 381–394.CrossRefGoogle Scholar
  40. 40.
    Sun, C., Zhang, W., & Letaief, K. B. (2007, June). Cluster-based cooperative spectrum sensing in cognitive radio systems. In 2007 IEEE international conference on communications (pp. 2511–2515). IEEE.Google Scholar
  41. 41.
    Guo, C., Peng, T., Xu, S., Wang, H., & Wang, W. (2009, April). Cooperative spectrum sensing with cluster-based architecture in cognitive radio networks. In IEEE 69th Vehicular Technology Conference, 2009. VTC Spring 2009 (pp. 1–5). IEEE.Google Scholar
  42. 42.
    Nguyen-Thanh, N., & Koo, I. (2013). A cluster-based selective cooperative spectrum sensing scheme in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–9.CrossRefGoogle Scholar
  43. 43.
    Zhang, W., Yang, Y., & Yeo, C. K. (2015). Cluster-based cooperative spectrum sensing assignment strategy for heterogeneous cognitive radio network. IEEE Transactions on Vehicular Technology, 64(6), 2637–2647.CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Lin, W., Huang, Y., & Ni, W. (2014). Optimization of cluster-based cooperative spectrum sensing scheme in cognitive radio networks with soft data fusion. Wireless Personal Communications, 77(4), 2871–2888.CrossRefGoogle Scholar
  45. 45.
    Liu, S., Lazos, L., & Krunz, M. (2012). Cluster-based control channel allocation in opportunistic cognitive radio networks. IEEE Transactions on Mobile Computing, 11(10), 1436–1449.CrossRefGoogle Scholar
  46. 46.
    Lazos, L., Liu, S., & Krunz, M. (2009, June). Spectrum opportunity-based control channel assignment in cognitive radio networks. In 2009 6th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 1–9). IEEE.Google Scholar
  47. 47.
    Zhao, J., Zheng, H., & Yang, G. H. (2005, November). Distributed coordination in dynamic spectrum allocation networks. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 259–268). IEEE.Google Scholar
  48. 48.
    Li, D., & Gross, J. (2011, June). Robust clustering of ad-hoc cognitive radio networks under opportunistic spectrum access. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.Google Scholar
  49. 49.
    Zhao, J., Zheng, H., & Yang, G. H. (2007). Spectrum sharing through distributed coordination in dynamic spectrum access networks. Wireless Communications and Mobile Computing, 7(9), 1061–1075.CrossRefGoogle Scholar
  50. 50.
    Li, X., Hu, F., Zhang, H., & Zhang, X. (2013). A cluster-based MAC protocol for cognitive radio ad hoc networks. Wireless Personal Communications, 69(2), 937–955.CrossRefGoogle Scholar
  51. 51.
    Pritom, M. M. A., Sarker, S., Razzaque, M. A., Hassan, M. M., Hossain, M. A., & Alelaiwi, A. (2015). A multi constrained QoS aware MAC protocol for cluster-based cognitive radio sensor networks. International Journal of Distributed Sensor Networks, 2015, 37.Google Scholar
  52. 52.
    Zareei, M., Islam, A. M., & Mansoor, N. (2016). Cross-layer mobility-aware MAC protocol for cognitive radio sensor network. EURASIP Journal on Wireless Communications and Networking, 2016, 160.CrossRefGoogle Scholar
  53. 53.
    Alsarhan, A., & Agarwal, A. (2009, August). Cluster-based spectrum management using cognitive radios in wireless mesh network. In Proceedings of 18th international conference on computer communications and networks, 2009. ICCCN 2009 (pp. 1–6). IEEE.Google Scholar
  54. 54.
    Altilar, A. T. D. (2011). United nodes: Cluster-based routing protocol for mobile cognitive radio networks. IET Communications, 5(15), 2097–2105.CrossRefGoogle Scholar
  55. 55.
    Huang, X. L., Wang, G., Hu, F., & Kumar, S. (2011). Stability-capacity-adaptive routing for high-mobility multihop cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(6), 2714–2729.CrossRefGoogle Scholar
  56. 56.
    Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369–3380.CrossRefGoogle Scholar
  57. 57.
    Zubair, S., & Fisal, N. (2014). Reliable geographical forwarding in cognitive radio sensor networks using virtual clusters. Sensors, 14(5), 8996–9026.CrossRefGoogle Scholar
  58. 58.
    Saleem, Y., Yau, K. L. A., Mohamad, H., Ramli, N., & Rehmani, M. H. (2015). SMART: A SpectruM-Aware ClusteR-based rouTing scheme for distributed cognitive radio networks. Computer Networks, 91, 196–224.CrossRefGoogle Scholar
  59. 59.
    Zhang, H., Zhang, Z., Dai, H., Yin, R., & Chen, X. (2011, December). Distributed spectrum-aware clustering in cognitive radio sensor networks. In 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (pp. 1–6). IEEE.Google Scholar
  60. 60.
    Ozger, M., & Akan, O. B. (2013, April). Event-driven spectrum-aware clustering in cognitive radio sensor networks. In 2013 Proceedings IEEE INFOCOM (pp. 1483–1491). IEEE.Google Scholar
  61. 61.
    Ozger, M., Fadel, E., & Akan, O. (2016). Event-to-sink spectrum-aware clustering in mobile cognitive radio sensor networks. IEEE Transactions on Mobile Computing, 15(9), 2221–2233.CrossRefGoogle Scholar
  62. 62.
    Pei, E., Han, H., Sun, Z., Shen, B., & Zhang, T. (2015). LEAUCH: Low-energy adaptive uneven clustering hierarchy for cognitive radio sensor network. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–8.CrossRefGoogle Scholar
  63. 63.
    Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26–38.CrossRefGoogle Scholar
  64. 64.
    FCC. (2003, December). Notice of proposed rulemaking and order. ET Docket No. 03-222.Google Scholar
  65. 65.
    Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4(1), 26–39.MathSciNetCrossRefGoogle Scholar
  66. 66.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRefGoogle Scholar
  67. 67.
    Chen, K.-C., & Prasad, R. (2009). Cognitive radio networks, in cognitive radio networks. Chichester: Wiley.CrossRefGoogle Scholar
  68. 68.
    Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 7(1), 32–48.CrossRefGoogle Scholar
  69. 69.
    Kozat, U. C., Kondylis, G., Ryu, B., & Marina, M. K. (2001, June). Virtual dynamic backbone for mobile ad hoc networks. In IEEE international conference on communications, 2001. ICC 2001 (Vol. 1, pp. 250–255). IEEE.Google Scholar
  70. 70.
    Baddour, K. E., Ureten, O., & Willink, T. J. (2009, August). Efficient clustering of cognitive radio networks using affinity propagation. In Proceedings of 18th international conference on computer communications and networks, 2009. ICCCN 2009 (pp. 1-6). IEEE.Google Scholar
  71. 71.
    Mansoor, N., Islam, A. M., Zareei, M., Baharun, S., & Komaki, S. (2013, December). Spectrum aware cluster-based architecture for cognitive radio ad-hoc networks. In 2013 international conference on advances in electrical engineering (ICAEE) (pp. 181–185). IEEE.Google Scholar
  72. 72.
    Bradonjić, M., & Lazos, L. (2012). Graph-based criteria for spectrum-aware clustering in cognitive radio networks. Ad Hoc Networks, 10(1), 75–94.CrossRefGoogle Scholar
  73. 73.
    ul Hasan, N., Ejaz, W., Manzoor, K., & Kim, H. S. (2013). GSM: Gateway selection mechanism for strengthening inter-cluster coordination in cognitive radio ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1.CrossRefGoogle Scholar
  74. 74.
    Asterjadhi, A., Baldo, N., & Zorzi, M. (2010, April). A cluster formation protocol for cognitive radio ad hoc networks. In 2010 European wireless conference (EW) (pp. 955–961). IEEE.Google Scholar
  75. 75.
    Zhang, H., Xu, N., Xu, F., & Wang, Z. (2016). Graph cut based clustering for cognitive radio ad hoc networks without common control channels. Wireless Networks, 1–13. doi: 10.1007/s11276-016-1329-5.
  76. 76.
    Xu, G., Tan, X., Wei, S., Guo, S., & Wang, B. (2010, September). An energy-driven adaptive cluster-head rotation algorithm for cognitive radio network. In 2010 first international conference on pervasive computing signal processing and applications (PCSPA) (pp. 138–141). IEEE.Google Scholar
  77. 77.
    Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004, November). Implementation issues in spectrum sensing for cognitive radios. In 2004 conference record of the thirty-eighth Asilomar conference on Signals, systems and computers (Vol. 1, pp. 772–776). IEEE.Google Scholar
  78. 78.
    Ma, M., & Tsang, D. H. (2009). Joint design of spectrum sharing and routing with channel heterogeneity in cognitive radio networks. Physical Communication, 2(1), 127–137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mahassin Mohamed Ahmed Osman
    • 1
  • Sharifah Kamilah Syed-Yusof
    • 1
  • Nik Noordini Nik Abd Malik
    • 1
  • Suleiman Zubair
    • 1
  1. 1.Universiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations