Wireless Networks

, Volume 24, Issue 4, pp 1119–1137 | Cite as

Hierarchical addressing scheme for 6LoWPAN WSN

  • Xiaonan Wang
  • Deguang Le
  • Hongbin Cheng


This paper proposes a hierarchical addressing scheme for 6LoWPAN WSN and aims to reduce the addressing cost and latency. The proposed scheme includes the address initialization and address maintenance algorithms. When the network starts, the address initialization algorithm is performed. Through the address initialization process, each node can be configured with a globally unique address without duplication address detection. The address maintenance algorithm is made up of the address configuration sub-algorithm and the address reclamation sub-algorithm. After the address initialization process ends, a new node performs the address configuration sub-algorithm to obtain a globally unique address from a neighbor. The address reclamation sub-algorithm is performed to reclaim the released addresses for reuse so that there is enough address resources available for assignment. Finally, the proposed scheme is evaluated, and the results show that this scheme effectively reduces the addressing delay and cost.


6LoWPAN Wireless sensor network Addressing Cluster 



This work is supported by Jiangsu Nature Science Foundation (BK20141230) and National Natural Science Foundation of China (61202440).


  1. 1.
    Kushalnagar, N., Montenegro, G., & Schumacher, C. (2007). IPv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals. RFC 4919.Google Scholar
  2. 2.
    Wang, X. (2014). All-IP wireless sensor networks for real-time patient monitoring. Journal of Biomedical Informatics, 52, 406–417.CrossRefGoogle Scholar
  3. 3.
    Rodrigues, J. J., & Neves, P. A. (2010). A survey on IP-based wireless sensor network solutions. International Journal of Communication Systems, 23(8), 963–981.Google Scholar
  4. 4.
    Ammari, H. M. (2007). A survey of current architectures for connecting wireless mobile ad hoc networks to the Internet. International Journal of Communication Systems, 20(8), 943–968.CrossRefGoogle Scholar
  5. 5.
    Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., & Carney, M. (2003). Dynamic host configuration protocol for IPv6 (DHCPv6), RFC 3315 (proposed standard).Google Scholar
  6. 6.
    Thomson, S., Narten, T., & Jinmei, T. (2007). IPv6 stateless address autoconfiguration. RFC 4862.Google Scholar
  7. 7.
    Ancillotti, E., Bruno, R., Conti, M., & Pinizzotto, A. (2009). Dynamic address autoconfiguration in hybrid ad hoc networks. Pervasive and Mobile Computing, 5(4), 300–317.CrossRefGoogle Scholar
  8. 8.
    Wang, X. N., & Qian, H. Y. (2012). Constructing 6lowpan wireless sensor networks based on cluster tree. IEEE Transactions on Vehicular Technology, 61(3), 1398–1405.CrossRefGoogle Scholar
  9. 9.
    Shelby, Z., Chakrabarti, S., Nordmark, E., & Bormann, C. (2012). Neighbor discovery optimization for IPv6 over low-power wireless personal area networks (6LoWPANs). RFC 6775.Google Scholar
  10. 10.
    Narten, T., Nordmark, E., & Simpson, W. H. & Soliman, H. (2007). Neighbor discovery for IP version 6 (IPv6). RFC 4861.Google Scholar
  11. 11.
    Kim, N., Ahn, S., & Lee, Y. (2007). AROD: An address autoconfiguration with address reservation and optimistic duplicated address detection for mobile ad hoc networks. Computer Communications, 30(8), 1913–1925.CrossRefGoogle Scholar
  12. 12.
    Wang, X., & Qian, H. (2012). Hierarchical and low-power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513–1529.CrossRefGoogle Scholar
  13. 13.
    Fernandes, N. C., Moreira, M. D. D., & Duarte, O. C. M. B. (2013). An efficient and robust addressing protocol for node autoconfiguration in ad hoc networks. IEEE/ACM Transactions on Networking (TON), 21(3), 845–856.CrossRefGoogle Scholar
  14. 14.
    Wang, X., Yang, Y., Yao, Y., & Cheng, H. (2014). An address configuration protocol for 6LoWPAN wireless sensor networks based on PDAD. Computer Standards and Interfaces, 36(6), 918–927.CrossRefGoogle Scholar
  15. 15.
    Reshmi, T. R., & Murugan, K. (2015). Filter-based address autoconfiguration protocol (FAACP) for duplicate address detection and recovery in MANETs. Computing, 97(3), 309–331.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Al-Mistarihi, M. F., Al-Shurman, M., & Qudaimat, A. (2011). Tree based dynamic address autoconfiguration in mobile ad hoc networks. Computer Networks the International Journal of Computer and Telecommunications Networking, 55(8), 1894–1908.Google Scholar
  17. 17.
    Ozturk, Y., & Nagarnaik, V. (2011). A scalable distributed dynamic address allocation protocol for ad-hoc networks. Wireless Networks, 17(2), 357–370.CrossRefGoogle Scholar
  18. 18.
    Wang, X., & Qian, H. (2013). Research on all-ip communication between wireless sensor networks and ipv6 networks. Computer Standards and Interfaces, 35(4), 403–414.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mrugalski, T., Wozniak, J., & Nowicki, K. (2013). Dynamic host configuration protocol for ipv6 improvements for mobile nodes. Telecommunication Systems, 52(2), 1021–1031.Google Scholar
  20. 20.
    Ghosh, U., & Datta, R. (2013). IDSDDIP: A secure distributed dynamic IP configuration scheme for mobile ad hoc networks. International Journal of Network Management, 23(6), 424–446.CrossRefGoogle Scholar
  21. 21.
    Khair, M. G., Kantarci, B., & Mouftah, H. T. (2014). Cellular IP address provisioning in a heterogeneous wireless network. International Journal of Communication Systems, 27(10), 2007–2021.CrossRefGoogle Scholar
  22. 22.
    IEEE Computer Society. (2011). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs), IEEE standard 802.15.4.Google Scholar
  23. 23.
    Zhang, L., Cheng, Q., Wang, Y., & Zeadally, S. (2008). A novel distributed sensor positioning system using the dual of target tracking. IEEE Transactions on Computers, 57(2), 246–260.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ssu, K. F., Ou, C. H., & Jiau, H. C. (2005). Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 54(3), 1187–1197.CrossRefGoogle Scholar
  25. 25.
    Mao, G., Fidan, B., & Anderson, B. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.CrossRefzbMATHGoogle Scholar
  26. 26.
    Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRefGoogle Scholar
  27. 27.
    Wang, X., Zhong, S., & Zhou, R. (2012). A mobility support scheme for 6lowpan. Computer Communications, 35, 392–404.CrossRefGoogle Scholar
  28. 28.
    Winter, T., Brandt, A., Hui, J., Kelsey, R., Levis, P., & Pister, K., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550.Google Scholar
  29. 29.
    Fall, K., & Varadhan, K. The ns manual.
  30. 30.
    Bettstetter, C., Resta, G., & Santi, P. (2003). The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE, 2(3), 257–269.Google Scholar
  31. 31.
    Hyytia, E., Lassila, P., & Virtamo, J. (2006). Spatial node distribution of the random waypoint mobility model with applications. IEEE Transactions on Mobile Computing, 5(6), 680–694.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Changshu Institute of TechnologyChangshuChina

Personalised recommendations