Wireless Networks

, Volume 24, Issue 4, pp 1217–1235 | Cite as

Egocentric network focused community aware multicast routing for DTNs

  • Guoxing Jiang
  • Yanqing Shen
  • Jun Chen
  • Yan Dong
  • Fang Lu
  • Qi Jiang
Article
  • 202 Downloads

Abstract

Multicasting for delay-tolerant networks (DTNs) in sparse social network scenarios is a challenge due to the deficiency of end-to-end paths. In social network scenarios, the behaviors of their nodes are controlled by human beings, and node mobility is the same as that of humans. To design the multicasting algorithms for DTNs, therefore, it would be promising to capture the intrinsic characteristics of relationships among these nodes. In this paper, multicasting in DTNs is regarded as a message dissemination issue in social networks, and an egocentric network focused community aware multicast routing algorithm (ENCAR) is proposed. As distinct from some social-based routing algorithms which only focus on centrality analysis, ENCAR is an utility based and hierarchical routing algorithm, its utility function is constructed on the basis of centrality analysis and destination-oriented contact probability. We take notice of clustering phenomenon in social networks, and present the community aware forwarding schemes. In addition, to simulate the mobility of individuals in social networks, a novel community based random way point mobility model is also presented. In this paper, the performance of ENCAR is theoretically analyzed and further evaluated on simulator ONE. Simulation results show that ENCAR outperforms most of the existing multicast routing algorithms in routing overhead, on condition that delivery ratio is relatively high, with other significant parameters guaranteed to perform well.

Keywords

DTNs Multicasting Egocentric network Community aware Mobility model 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant 91538203.

References

  1. 1.
    Musolesi, M., & Mascolo, C. (2009). CAR: Context-aware adaptive routing for delay-tolerant mobile networks. IEEE Transactions on Mobile Computing, 8(2), 246–260.CrossRefGoogle Scholar
  2. 2.
    Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.CrossRefGoogle Scholar
  3. 3.
    Fall, K. (2008). DTN: An architectural retrospective. IEEE Journal on Selected Areas in Communications, 26(5), 828–836.CrossRefGoogle Scholar
  4. 4.
    Tovar, A., Friesen, T., Ferens, K., & McLeod, B. (2010). A DTN wireless sensor network for wildlife habitat monitoring. In Proceedings on IEEE CCECE ’10, pp. 1–5, May.Google Scholar
  5. 5.
    Li, X., & Shu, W. (2008). DTN routing in vehicular sensor networks. In Proceedings of IEEE GlobeCom, pp. 1–5, November/December.Google Scholar
  6. 6.
    Dunbabin, M., Corke, P., Vailescu, I., & Rus, D. (2006). Data muling over underwater wireless sensor networks using an autonomous underwater vehicle. In Proceedings of IEEE ICRA ’06, pp. 2091–2098, May.Google Scholar
  7. 7.
    Caini, C., Cornice, P., Firrincieli, R., & Lacamera, D. (2008). A DTN approach to satellite communications. IEEE Journal on Selected Areas in Communications, 26(5), 820–827.CrossRefGoogle Scholar
  8. 8.
    Lu, Z., & Fan, J. (2010). Delay/disruption tolerant network and its application in military communications. In Proceedings of IEEE ICCDA ’10, pp. 231–234, June.Google Scholar
  9. 9.
    Yong, L., Su, G., Wu, D., Jin, D., Su, L., & Zeng, L. (2011). The impact of node selfishness on multicasting in delay tolerant networks. IEEE Transactions on Vehicular Technology, 60(5), 2224–2238.CrossRefGoogle Scholar
  10. 10.
    Fan, J., Chen, J., Du, Y., Wang, P., & Sun, Y. (2011). DelQue: A socially aware delegation query scheme in delay-tolerant networks. IEEE Transactions on Vehicular Technology, 60(5), 2181–2193.CrossRefGoogle Scholar
  11. 11.
    Daly, E., & Haahr, M. (2009). Social network analysis for information flow in disconnected delay-tolerant MANETs. IEEE Transactions on Mobile Computing, 8(5), 606–621.CrossRefGoogle Scholar
  12. 12.
    Pan, H., Crowcroft, J., & Yoneki, E. (2011). BUBBLE rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRefGoogle Scholar
  13. 13.
    Gao, W., Li, Q. H., Zhao, B., & Cao, G. H. (2009). Multicasting in delay tolerant networks: A social network perspective. In Proceedings of ACM MobiHoc, pp. 299–308, May.Google Scholar
  14. 14.
    Zhao, W., Ammar, M., & Zegura, E. (2005). Multicasting in delay tolerant networks: Semantic models and routing algorithms. In Proceedings of ACM SIGCOMM, pp. 268–275, August.Google Scholar
  15. 15.
    Ye, Q., Cheng, L., Chuah, M., & Davison, B. (2009). Performance comparison of different multicast routing strategies in disruption tolerant networks. Computer Communications, 32(16), 1731–1741.CrossRefGoogle Scholar
  16. 16.
    Xi, Y., & Chuah, M. (2009). An encounter-based multicast scheme for disruption tolerant networks. Computer Communications, 32(16), 1742–1756.CrossRefGoogle Scholar
  17. 17.
    Le, T., Kalantarian, H., & Gerla, M. (June 2015). A two-level multicast routing strategy for delay tolerant networks. Proceedings of MED-HOC-NET.Google Scholar
  18. 18.
    Galluccio, L., Lorenzo, B., & Glisic, S. (2015). Sociality-aided new adaptive infection recovery schemes for multicast DTNs. IEEE Transactions on Vehicular Technology. doi: 10.1109/TVT.2015.2450202
  19. 19.
    Gao, W., Li, Q., Zhao, B., & Cao, G. (2012). Social-aware multicast in disruption-tolerant networks. IEEE/ACM Transactions on Networking, 20(5), 1553–1566.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., & Zhao, J. (May 2009). Social-aware data diffusion in delay tolerant MANETs. Proceedings of MobiHoc.Google Scholar
  21. 21.
    Xiao, M., Wu, J., & Huang, L. (2014). Community-aware opportunistic routing in mobile social networks. IEEE Transactions on Computers, 63(7), 1682–1695.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys & Tutorials, 15(1), 387–401.CrossRefGoogle Scholar
  23. 23.
    Magaia, N., Francisco, A., Pereira, P., & Correia, M. (2015). Betweenness centrality in delay tolerant networks: A survey, ad hoc networks. doi: 10.1016/j.adhoc.2015.05.002
  24. 24.
    Freeman, L. (1978–1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.Google Scholar
  25. 25.
    Marsden, P. (2002). Egocentric and sociocentric measures of network centrality. Social Networks, 24(24), 407–422.CrossRefGoogle Scholar
  26. 26.
    Everett, M., & Borgatti, S. (2005). Ego network betweenness. Social Networks, 27(1), 31–38.CrossRefGoogle Scholar
  27. 27.
    Cai, H., & Eun, D. (2009). Crossing over the bounded domain: From exponential to power-law intermeeting time in mobile ad hoc networks. IEEE Transactions on Networking, 17(5), 1578–1591.CrossRefGoogle Scholar
  28. 28.
    Zhu, H., Fu, L., Xue, G., Zhu, Y., Li, M., & Ni, L. (2011). Impact of traffic influxes: Revealing exponential intercontact time in urban VANETs. IEEE Transactions on Parallel and Distributed Systems, 22(8), 1258–1266.CrossRefGoogle Scholar
  29. 29.
    Conan, V., & Leguay, J. (2007). Characterizing pairwise inter-contact patterns in delay tolerant networks. In Proceedings of ICST.Google Scholar
  30. 30.
    Gao, W., Cao, G., La Porta, T., & Han, J. (2013). On exploiting transient social contact patterns for data forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 12(1), 151–165.CrossRefGoogle Scholar
  31. 31.
    Batabyal, S., & Bhaumik, P. (2015). Mobility models, traces and impact of mobility on opportunistic routing algorithms: A survey. IEEE Communications Surveys & Tutorials, 17(3), 1679–1707.CrossRefGoogle Scholar
  32. 32.
    Schurgot, M., & Comaniciu, C. (2012). Beyond traditional DTN routing: Social networks for opportunistic communication. IEEE Communications Magazine, 50(7), 155–162.CrossRefGoogle Scholar
  33. 33.
    Chuah, M. (2009). Social network aided multicast delivery scheme for human contact-based networks. In Proceedings of SIMPLEX, July.Google Scholar
  34. 34.
    Wu, J., & Wang, Y. (2010). A non-replication multicasting scheme in delay tolerant networks. In Proceedings of IEEE MASS, pp. 89–98, November.Google Scholar
  35. 35.
    Wang, Y., Li, X., & Wu, J. (2010). Multicasting in delay tolerant networks: Delegation forwarding. In Proceedings of IEEE GLOBECOM.Google Scholar
  36. 36.
    Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of SIMUTools.Google Scholar
  37. 37.
    Augustin, C., Pan, H., Jon, C., Christophe, D., & Richard, G. (2007). Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6(6), 606–620.CrossRefGoogle Scholar
  38. 38.
    Yang, S., Yang, X., Zhang, C., & Spyrou, E. (2010). Using social network theory for modeling human mobility. IEEE Journal on Network, 24(5), 6–13.CrossRefGoogle Scholar
  39. 39.
    Abdulla, M., & Simon, R. (2007). Characteristics of common mobility models for opportunistic networks. In Proceedings of PM2HW2N, pp. 105–109, October.Google Scholar
  40. 40.
    Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. Technical report, Duke University, Durham, NC, CS-200006, April.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Guoxing Jiang
    • 1
  • Yanqing Shen
    • 1
  • Jun Chen
    • 1
  • Yan Dong
    • 1
  • Fang Lu
    • 1
  • Qi Jiang
    • 1
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations