Wireless Networks

, Volume 24, Issue 5, pp 1575–1592 | Cite as

Proportional bandwidth allocation with consideration of delay constraint over IEEE 802.11e-based wireless mesh networks

  • Cheng-Han Lin
  • Ce-Kuen Shieh
  • Wen-Shyang Hwang
  • Wei-Tsang Huang
Article
  • 73 Downloads

Abstract

Wireless mesh networks (WMNs) extend the limited transmission coverage of wireless LANs by enabling users to connect to the Internet via a multi-hop relay service provided by wireless mesh routers. In such networks the quality of experience (QoE) depends on both the user location relative to the Internet gateway and the traffic load. Various channel access or queue management schemes have been proposed for achieving throughput fairness among WMN users. However, delay and bandwidth utilization efficiency of such schemes may be unacceptable for real-time applications. Accordingly, the present study proposes a proportional bandwidth allocation scheme with a delay constraint consideration for enhancing the QoE of users of WMNs based on the IEEE 802.11e standard. An analytical model of the proposed scheme is provided. Moreover, the performance of the proposed scheme is systematically compared with that of existing bandwidth allocation methods. The simulation results show that the proposed scheme outperforms previously proposed schemes in terms of both an improved throughput fairness among the WMN users and a smaller end-to-end transmission delay.

Keywords

Wireless mesh network Quality of experience IEEE 802.11e 

Notes

Acknowledgments

This research was supported by the Ministry of Science and Technology (MOST), NSC 103-2221-E-006-144-MY3, MOST 104-2221-E-151-005 and MOST 105-2221-E-151 -037 -MY3.

References

  1. 1.
    Raniwala, A., Pradipta, D., & Sharma S. (2007). End-to-end flow fairness over IEEE 802.11-based wireless mesh networks. In IEEE international conference on computer communications (ICC) (pp. 2361–2365). Glasgow, UK.Google Scholar
  2. 2.
    Hsieh, H., & Sivakumar, R. (2002). IEEE 802.11 over multi-hop wireless networks: problems and new perspectives. In IEEE vehicular technology conference (VTC) (pp. 748–752). Vancouver, Canada.Google Scholar
  3. 3.
    Hiertz, G. R., Max, S., Junge, T., Denteneer, D., & Berlemann, L. (2008). IEEE 802.11 s—Mesh deterministic access. In European wireless conference (pp. 1–8). Prague, Czech Republic.Google Scholar
  4. 4.
    Hamdaoui, B., Elaoud, M., & Ramanathan, P. (2009). A delay-based admission control mechanism for multimedia support in IEEE 802.11e wireless LANs. Wireless Networks, 15(7), 875–886.CrossRefGoogle Scholar
  5. 5.
    Lee, S., & Yoo, C. (2010). Hop-based priority technique using 802.11e for multimedia streaming. IEEE Transactions on Consumer Electronics, 56(1), 48–53.CrossRefGoogle Scholar
  6. 6.
    Bae, Y., Kim, K. J., Hwang, E., Park, J. S., & Choi, B. D. (2008). Packet management scheme for location-independent end-to-end delay in IEEE 802.11s multi-hop wireless mesh networks. In International conference on telecommunications (ICT) (pp. 1–8). Lyon, France.Google Scholar
  7. 7.
    Li, J., Li, Z., & Mohapatra, P. (2009). Adaptive per hop differentiation for end-to-end delay assurance in multihop wireless networks. ACM Ad Hoc Networks, 7(6), 1169–1182.CrossRefGoogle Scholar
  8. 8.
    Kim, M. S., Shrestha, D. M., & Ko, Y. B. (2009). EDCA-TM: IEEE 802.11e MAC enhancement for wireless multi-hop networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Budapest, Hungary.Google Scholar
  9. 9.
    Wakuda, K., Kasahara, S., Kure, Y., & Itakura, E. (2009). A packet scheduling algorithm for max-min fairness in multihop wireless LANs. ACM Computer Communications, 32(13), 1437–1444.CrossRefGoogle Scholar
  10. 10.
    Nandiraju, D., Nandiraju, N., & Agrawal, D. P. (2007). Service differentiation in IEEE 802.11s mesh networks: A dual queue strategy. In IEEE military communication conference (MILCON) (pp. 1–7). Orlando, Florida.Google Scholar
  11. 11.
    Romdhani, L., Ni, Q., & Turletti, T. (2003). Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1373–1378). New Orleans, Louisiana, USA.Google Scholar
  12. 12.
    Siris, V., & Stamatakis, G. (2006). Optimal CWmin selection for achieving proportional fairness in multi-rate 802.11e WLANs: Test-bed implantation and evaluation. In ACM international workshop on wireless network testbeds, experimental evaluation & characterization (pp. 41–48). Los Angeles, CA, USA.Google Scholar
  13. 13.
    Nahle, S., & Malouch, N. (2009) Graph-based approach for enhancing capacity and fairness in wireless mesh networks. In IEEE global telecommunications conference (GLOBECOM) (pp. 1–7). Hawaii, USA.Google Scholar
  14. 14.
    Razzaque, M. A., Mamun-Or-Rashid, M., Alam, M. M., & Hong, C. S. (2009). Aggregated traffic flow weight controlled hierarchical MAC protocol for wireless sensor networks. Annals of Telecommunications, 64(11–12), 705–721.CrossRefGoogle Scholar
  15. 15.
    Lee, J., Yoon, H., & Yeom, I. (2010). Distributed fair scheduling for wireless mesh networks using IEEE 802.11. IEEE Transaction on Vehicular Technology, 59(9), 4467–4475.CrossRefGoogle Scholar
  16. 16.
    Li, T., Leith, D. J., Badarla, V., Malone, D., & Cao, Q. (2011). Achieving end-to-end fairness in 802.11e based wireless multi-hop mesh networks without coordination. ACM Mobile Networks and Applications, 16(1), 17–34.CrossRefGoogle Scholar
  17. 17.
    Xu, S., & Saadawi, T. (2001). Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? IEEE Communications Magazine, 39(6), 130–137.CrossRefGoogle Scholar
  18. 18.
    Raniwala, A., & Chieh, T. (2005). Architecture and algorithms for an IEEE-802.11-based multi-channel wireless mesh network. In IEEE INFOCOM (INFOCOM) (pp. 2223–2224). Miami, USA.Google Scholar
  19. 19.
    Lee, J., Liao, W., & Cheng, M. C. (2008). An incentive-based fairness mechanism for multi-hop wireless backhaul networks with selfish nodes. IEEE Transactions on Wireless Communications, 7(2), 697–704.CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Stockhammer, T., & Hannuksela, M. M. (2005). H.264/AVC video for wireless transmission. IEEE Wireless Communications, 12(4), 6–13.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Ke, C. H., Lin, C. H., Shieh, C. K., & Hwang, W. S. (2006). A novel realistic simulation tool for video transmission over wireless network. In The IEEE international conference on sensor networks, ubiquitous, and trustworthy computing (SUTC). Taichung, Taiwan.Google Scholar
  25. 25.
  26. 26.
    Liu, C. Y., Fu, B., & Huang, H. J. (2014). Delay minimization and priority scheduling in wireless mesh networks. Wireless Networks, 20(7), 1955–1965.CrossRefGoogle Scholar
  27. 27.
    Rak, J. (2015). Measures of region failure survivability for wireless mesh networks. Wireless Networks, 21(2), 673–684.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Malnar, M., Neskovic, N., & Neskovic, A. (2015). A new quality of service aware multi-channel multi-interface link layer protocol for wireless mesh networks. Wireless Networks, 21(3), 727–738.CrossRefGoogle Scholar
  29. 29.
    Le-Dang, Q., McManis, J., & Muntean, G. M. (2015). A location coordinate-based video delivery scheme over wireless mesh networks. Wireless Networks, 21(5), 1591–1602.CrossRefGoogle Scholar
  30. 30.
    Dzal, G. I. M., Feng, S., Tang, W., & Feng, W. (2014). Joint fair resource allocation for multi-radio multi-channel mesh networks with flow demand constraint. In International conference on communication systems and network technologies (CSNT). Bhopal, India.Google Scholar
  31. 31.
    Golestanian, M., Mohammad, R. A., & Reza, G. (2014). Distributed cognitive routing in multi-channel multi-hop networks with accessibility consideration. International Transaction of Electrical and Computer Engineers System, 2(6), 149–157.Google Scholar
  32. 32.
    Hou, I., & Kumar, P. R. (2012). Queueing systems with hard delay constraints: A framework for real-time communication over unreliable wireless channels. Queueing Systems, 71(1), 151–177.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hou, I. (2015). Packet scheduling for real-time surveillance in multihop wireless sensor networks with lossy channels. IEEE Transactions on Wireless Communications, 14(2), 1071–1079.CrossRefGoogle Scholar
  34. 34.
    Mohand, Y., Louiza, B. M., Djamil, A., & Lilia, Z. K. (2014). Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions. Wireless Networks, 20(5), 917–934.CrossRefGoogle Scholar
  35. 35.
    Lin, C. H., Wang, Y. C., Shieh, C. K., & Hwang, W. S. (2012). An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs. Computer Networks, 56(11), 2590–2599.CrossRefGoogle Scholar
  36. 36.
    Zhou, A., Liu, M., Li, Z., & Dutkiewicz, E. (2015). Cross-layer design with optimal dynamic gateway selection for wireless mesh networks. Computer Communications, 55(1), 69–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cheng-Han Lin
    • 1
  • Ce-Kuen Shieh
    • 2
  • Wen-Shyang Hwang
    • 3
  • Wei-Tsang Huang
    • 2
  1. 1.Department of Health-Business AdministrationFooyin UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC
  3. 3.Department of Electrical EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan, ROC

Personalised recommendations