Advertisement

Wireless Networks

, Volume 24, Issue 4, pp 1019–1031 | Cite as

An accurate two dimensional Markov chain model for IEEE 802.11n DCF

  • Nasreddine Hajlaoui
  • Issam Jabri
  • Maher Ben Jemaa
Article

Abstract

According to the amendment 5 of the IEEE 802.11 standard, 802.11n still uses the distributed coordination function (DCF) access method as mandatory function in access points and wireless stations (essentially to assure compatibility with previous 802.11 versions). This article provides an accurate two dimensional Markov chain model to investigate the throughput performance of IEEE 802.11n networks when frame aggregation and block acknowledgements (Block-ACK) schemes are adopted. Our proposed model considered packet loss either from collisions or channel errors. Further, it took anomalous slots and the freezing of backoff counter into account. The contribution of this work was the analysis of the DCF performance under error-prone channels considering both 802.11n MAC schemes and the anomalous slot in the backoff process. To validate the accuracy of our proposed model, we compared its mathematical simulation results with those obtained using the 802.11n DCF in the network simulator (NS-2) and with other analytical models investigating the performance of 802.11n DCF. Simulation results proved the accuracy of our model.

Keywords

Analytical models Block acknowledgment Error prone channels Frame aggregation IEEE 802.11n Markov chain Network simulation 

References

  1. 1.
    IEEE 802.11n Std. (2009). Part 11: Standard for Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications amendment 5: Enhancements for higher throughput.Google Scholar
  2. 2.
    Joonsuk, K., & Inkyu, L. (2015). 802.11 WLAN: history and new enabling MIMO techniques for next generation standards. IEEE Communications Magazine, 53(3), 134–140.CrossRefGoogle Scholar
  3. 3.
    IEEE 802.11g Std. (2003). Part 11: Standard for wireless LAN medium access control (MAC)and physical layer (PHY) specifications : Further higher data rate extension in the 2.4 GHZ band.Google Scholar
  4. 4.
    Tinnirello, I., Bianchi, G., & Xiao, Y. (2010). Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology, 59(3), 1055–1067.CrossRefGoogle Scholar
  5. 5.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. Journal on Selected Areas in Communications, 18(3), 535–547.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, H. (2011). Revisit of the Markov model of IEEE 802.11 DCF for an error-prone channel. IEEE Communications Letters, 15(12), 1278–1280.CrossRefGoogle Scholar
  7. 7.
    Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.CrossRefGoogle Scholar
  8. 8.
    Engelstad, P. -E., & Osterbo, O. -N. (2005). Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction. In The 8th ACM international symposium on modeling, analysis and simulation of wireless and mobile systems, Montreal, Quebec, Canada, MSWiM’05 (pp. 224–233).Google Scholar
  9. 9.
    Tay, Y.-C., & Chua, K.-C. (2001). A capacity analysis for the IEEE 802.11 MAC protocol. Wireless Networks, 7(2), 159–171.CrossRefzbMATHGoogle Scholar
  10. 10.
    Nadeem, T., & Agrawala, A. (2004) IEEE 802.11 DCF enhancements for noisy environments. In 15th IEEE international symposium on personal, indoor and mobile radio communications, Barcelona, Spain (pp. 93–97).Google Scholar
  11. 11.
    Chatzimisios, P., Boucouvalas, A., & Vitsas V. (2004) Performance analysis of IEEE 802.11 DCF in presence of transmission errors. In IEEE international conference on communications, Paris, France.Google Scholar
  12. 12.
    Dong, X., & Varaiya, P. (2005). Saturation throughput analysis of IEEE 802.11 wireless lans for a lossy channel. IEEE Communications Letters, 9(2), 100–102.CrossRefGoogle Scholar
  13. 13.
    Ahuja, A., Krishna, P.-V., & Saritha, V. (2013). Analysis of a refined model for the IEEE 802.11 distributed coordination function. International Journal of Communication Networks and Distributed Systems, 10(1), 66–82.CrossRefGoogle Scholar
  14. 14.
    Lin, Y., & Wong, V. W. -S. (2006). Frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs. In GLOBECOM, San Francisco, CA, USA.Google Scholar
  15. 15.
    Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D., & Ziane-Khodja, L. (2014). Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions. Wireless Networks, 20(5), 917–934.CrossRefGoogle Scholar
  16. 16.
    Senthilkumar, D., & Krishnan, A. (2010). Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing, 7(1), 95–104.CrossRefGoogle Scholar
  17. 17.
    Yin, J., Wang, X., & Agrawal, D. -P. (2004). Optimal packet size in error-prone channel for IEEE 802.11 distributed coordination function. In IEEE WCNC, Atlanta, USA.Google Scholar
  18. 18.
    Ni, Q., Li, T., Turletti, T., & Xiao, Y. (2005). Saturation throughput analysis of error-prone 802.11 wireless networks: Research articles. Wireless Communications and Mobile Computing, 5(8), 945–956.CrossRefGoogle Scholar
  19. 19.
    Li, T., Ni, Q., Malone, D., Leith, D., Xiao, Y., & Turletti, R. (2009). Aggregation with fragment retransmission for very high-speed WLANs. IEEE/ACM Transactions on Networking, 17(2), 591–604.CrossRefGoogle Scholar
  20. 20.
    Frohn, S., Gubner, S., & Lindemann, C. (2011). Analyzing the effective throughput in multi-hop IEEE 802.11n networks. Computer Communications, 34(16), 1912–1921.CrossRefGoogle Scholar
  21. 21.
    Kim, B. -S., Hwang, H. -Y., & Sung, D. -K. (2008) Effect of frame aggregation on the throughput performance of IEEE 802.11n. In IEEE WCNC, Las Vegas, Nevada, USA (pp. 1740–1744).Google Scholar
  22. 22.
    Kosek-Szott, K. (2014). A comprehensive analysis of IEEE 802.11 DCF heterogeneous traffic sources. Ad Hoc Networks, 16, 165–181.CrossRefGoogle Scholar
  23. 23.
    Martorell, G., Riera-Palou, F., & Femenias, G. (2014). Modeling fast link adaptation-based 802.11n distributed coordination function. Telecommunication Systems, 56(2), 215–227.CrossRefGoogle Scholar
  24. 24.
    Hoefel, R. (2008). IEEE 802.11n MAC improvements: A MAC and PHY cross-layer model to estimate the throughput. In IEEE VTC, Calgary, Alberta, Canada.Google Scholar
  25. 25.
    Heereman, W. J., Tanghe, E., Plets, D., Verloock, L., & Martens, L. (2012). Path loss model and prediction of range, power and throughput for 802.11n in large conference rooms. International Journal of Electronics and Communications, 66(7), 561–568.CrossRefGoogle Scholar
  26. 26.
    Daldoul, Y., Ahmed, T., & Meddour, D. (2011). IEEE 802.11n aggregation performance study for the multicast. In Wireless Days’11, Niagara Falls, Ontario, Canada.Google Scholar
  27. 27.
    Liu, W.-J., Huang, C.-H., Feng, K.-T., & Tseng, P.-H. (2014). Performance analysis of greedy fast-shift block acknowledgement for high-throughput wlans. Wireless Networks, 20(8), 2503–2519.CrossRefGoogle Scholar
  28. 28.
    Hajlaoui, N., Jabri, I., & Jemaa, M. B. (2013). Analytical study of frame aggregation in error-prone channels. The 9th international wireless communications and mobile computing conference (pp. 237–242). Sardinia, Italy, IWCMC: Cagliari.Google Scholar
  29. 29.
    Banchs, A., La Oliva, A., Eznarriaga, L., Kowalski, D.-R., & Serrano, P. (2014). Performance analysis and algorithm selection for reliable multicast in IEEE 802.11aa wireless LAN. IEEE Transactions on Vehicular Technology, 63(8), 3875–3891.CrossRefGoogle Scholar
  30. 30.
    Mccanne, S., Floyd S., & Fall, K. (2008). NS2 (network simulator 2). http://www.isi.edu/nsnam/ns/.
  31. 31.
    Mohammad, N., & Muhammad, S. (2012). Modeling and analyzing MAC frame aggregation techniques in 802.11n using bi-dimensional Markovian model. In Springer networked digital technologies volume 293 of the series communications in computer and information science (vol. 293, pp. 408–419).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nasreddine Hajlaoui
    • 1
  • Issam Jabri
    • 1
  • Maher Ben Jemaa
    • 2
  1. 1.Hatem Bettaher IResCoMath Research UnitNational School of Engineers of GabesGabèsTunisia
  2. 2.ReDCAD Research Laboratory, National School of Engineers of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations