Wireless Networks

, Volume 24, Issue 4, pp 1083–1098 | Cite as

Power allocation in small cell networks with full-duplex self-backhauls and massive MIMO

  • Lei Chen
  • F. Richard Yu
  • Hong Ji
  • Bo Rong
  • Victor C. M. Leung


With the dense deployment of small cell networks, low-cost backhaul schemes for small cell base stations (SBSs) have attracted great attentions. Self-backhaul using cellular communication technology is considered as a promising solution. Although some excellent works have been done on self-backhaul in small cell networks, most of them do not consider the recent advances of full-duplex (FD) and massive multiple-input and multiple-output (MIMO) technologies. In this paper, we propose a self-backhaul scheme for small cell networks by combining FD and massive MIMO technologies. In our proposed scheme, the macro base station (MBS) is equipped with massive MIMO antennas, and the SBSs have the FD communication ability. By treating the SBSs as special macro users, we can achieve the simultaneous transmissions of the access link of users and the backhaul link of SBSs in the same frequency. Furthermore, considering the existence of inter-tier and intra-tier interference, we formulate the power allocation problem of the MBS and SBSs as an optimization problem. Because the formulated power allocation problem is a non-convex problem, we transform the original problem into a difference of convex program by successive convex approximation method and variable transformation, and then solve it using a constrained concave convex procedure based iterative algorithm. Finally, extensive simulations are conducted with different system configurations to verify the effectiveness of the proposed scheme.


Small cell networks Self-backhaul Full duplex Massive MIMO 



This paper is jointly supported by the Hi-Tech Research and Development Program of China (National 863 Program) under Grant 2014AA01A701 and National Natural Science Foundation of China under Grant 61271182.


  1. 1.
    Alcatel-Lucent. (2011). The declining profitability trend of mobile data: What can be done? Assessing network costs and planning for sustainable revenue growth. Market Analysis, Tech. Rep.Google Scholar
  2. 2.
    Fortes, S., Aguilar-Garcia, A., Barco, R., Barba, F., Fernandez-luque, J., & Fernandez-Duran, A. (2015). Management architecture for location-aware self-organizing LTE/LTE-a small cell networks. IEEE Communications Magazine, 53(1), 294–302.CrossRefGoogle Scholar
  3. 3.
    Hoadley, J., & Maveddat, P. (2012). Enabling small cell deployment with HetNet. IEEE Wireless Communiations, 19(2), 4–5.CrossRefGoogle Scholar
  4. 4.
    Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.CrossRefGoogle Scholar
  5. 5.
    Ranaweera, C., Resende, M., Reichmann, K., Iannone, P., Henry, P., Kim, B.-J., et al. (2013). Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network. IEEE Communications Magazine, 51(9), 62–69.CrossRefGoogle Scholar
  6. 6.
    Ranaweera, C., Iannone, P., Oikonomou, K., & Reichmann, K. (2013). Design of cost-optimal passive optical networks for small cell backhaul using installed fibers. IEEE/OSA Journal of Optical Communications and Networking, 5(10), A230–A239.CrossRefGoogle Scholar
  7. 7.
    Hur, S., Kim, T., Love, D., Krogmeier, J., Thomas, T., & Ghosh, A. (2013). Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Transactions on Communications, 61(10), 4391–4403.CrossRefGoogle Scholar
  8. 8.
    Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmwave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.CrossRefGoogle Scholar
  9. 9.
    Mahloo, M., Monti, P., Chen, J., & Wosinska, L. (2014). Cost modeling of backhaul for mobile networks. In ICC Workshops, pp. 397–402.Google Scholar
  10. 10.
    Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.CrossRefGoogle Scholar
  11. 11.
    Bladsjo, D., Hogan, M., & Ruffini, S. (2013). Synchronization aspects in LTE small cells. IEEE Communications Magazine, 51(9), 70–77.CrossRefGoogle Scholar
  12. 12.
    Hui, D., & Axnas, J. (2013). Joint routing and resource allocation for wireless self-backhaul in an indoor ultra-dense network. In Proceedings of IEEE PIMRC, pp. 3083–3088.Google Scholar
  13. 13.
    Erwu, L., Shan, J., Gang, S., & Luoning, G. (2006). Fair scheduling in wireless multi-hop self-backhaul networks. In Proceedings of AICT-ICIW, pp. 96–96.Google Scholar
  14. 14.
    Magee, A. (2010). Synchronization in next-generation mobile backhaul networks. IEEE Communications Magazine, 48(10), 110–116.CrossRefGoogle Scholar
  15. 15.
    Liu, G., Yu, F., Ji, H., Leung, V., & Li, X. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 17(2), 500–524.CrossRefGoogle Scholar
  16. 16.
    Suraweera, H. A., Krikidis, I., Zheng, G., Yuen, C., & Smith, P. J. (2014). Low-complexity end-to-end performance optimization in MIMO full-duplex relay systems. IEEE Transactions on Wireless Communications, 13(2), 913–927.CrossRefGoogle Scholar
  17. 17.
    Krikidis, I., Suraweera, H. A., Smith, P. J., & Yuen, C. (2012). Full-duplex relay selection for amplify-and-forward cooperative networks. IEEE Transactions on Wireless Communications, 11(12), 4381–4393.CrossRefGoogle Scholar
  18. 18.
    Pitaval, R. A., Tirkkonen, O., Wichman, R., Pajukoski, K., Lahetkangas, E., & Tiirola, E. (2015). Full-duplex self-backhauling for small-cell 5G networks. IEEE Wireless Communications, 22(5), 83–89.CrossRefGoogle Scholar
  19. 19.
    Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., & Zhang, R. (2014). An overview of massive mimo: Benefits and challenges. IEEE Journal of Selected Areas in Communications, 8(5), 742–758.Google Scholar
  20. 20.
    Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal of Selected Areas in Communications, 31(2), 160–171.CrossRefGoogle Scholar
  21. 21.
    Hoydis, J., Hosseini, K., ten Brink, S., & Debbah, M. (2013). Making smart use of excess antennas: Massive MIMO, small cells, and TDD. Bell Labs Technical Journal, 18(2), 5–21.CrossRefGoogle Scholar
  22. 22.
    Qian, L. P., Zhang, Y. J., Wu, Y., & Chen, J. (2013). Joint base station association and power control via benders’ decomposition. IEEE Transactions on Wireless Communications, 12(4), 1651–1665.CrossRefGoogle Scholar
  23. 23.
    Lakshminarayana, S., Assaad, M., & Debbah, M. (2015). Transmit power minimization in small cell networks under time average QoS constraints. IEEE Journal of Selected Areas in Communications, 33(10), 2087–2103.CrossRefGoogle Scholar
  24. 24.
    Soh, Y. S., Quek, T., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal of Selected Areas in Communications, 31(5), 840–850.CrossRefGoogle Scholar
  25. 25.
    Rusek, F., Persson, D., Lau, B. K., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  26. 26.
    Jiang, Z., Molisch, A., Caire, G., & Niu, Z. (2015). Achievable rates of FDD massive MIMO systems with spatial channel correlation. IEEE Transactions on Wireless Communications, 14(5), 2868–2882.CrossRefGoogle Scholar
  27. 27.
    Gao, Z., Dai, L., Dai, W., & Wang, Z. (2015). Block compressive channel estimation and feedback for FDD massive MIMO. In Proceedings of IEEE INFOCOM WKSHPS 2015, pp. 49–50.Google Scholar
  28. 28.
    Yoo, T., & Goldsmith, A. (2006). On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal of Selected Areas in Communications, 24(3), 528–541.CrossRefGoogle Scholar
  29. 29.
    Riihonen, T., Werner, S., & Wichman, R. (2011). Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Transactions on Signal Processing, 59(12), 5983–5993.MathSciNetCrossRefGoogle Scholar
  30. 30.
    He, C., Sheng, B., Zhu, P., & You, X. (2012). Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156.CrossRefGoogle Scholar
  31. 31.
    Papandriopoulos, J., & Evans, J. (2009). SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks. IEEE Transactions on Information Theory, 55(8), 3711–3724.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Julian, D., Chiang, M., O’Neill, D., & Boyd, S. (2002). QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. In Proceedings of IEEE INFOCOM, Vol. 2, pp. 477–486.Google Scholar
  33. 33.
    Chiang, M., Tan, C. W., Palomar, D., O’Neill, D., & Julian, D. (2007). Power control by geometric programming. IEEE Transactions on Wireless Communications, 6(7), 2640–2651.CrossRefGoogle Scholar
  34. 34.
    Boyd, S., & Vandenberghe, L. (2009). Convex optimization. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  35. 35.
    An, L.T.H. (2003). DC programming for solving a class of global optimization problems via reformulation by exact penalty. In Proceedings of first international workshop on global constraint optimization and constraint satisfaction (pp. 87–101). Springer.Google Scholar
  36. 36.
    Horst, R., & Thoai, N. V. (1999). DC programming: Overview. Journal of Optimization Theory and Application, 103(1), 1–43.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Smola, A. J., Vishwanathan, S. V. N., & Hofmann, T. (2005). Kernel methods for missing variables. Tenth International Workshop on Artificial Intelligence & Statistics (pp. 325–332).Google Scholar
  38. 38.
    Lanckriet, G. R., & Sriperumbudur, B. K. (2009). On the convergence of the concave–convex procedure. In Proceedings of advances in neural information processing systems, pp. 1759–1767.Google Scholar
  39. 39.
    Li, H., & Adali, T. (2008). Complex-valued adaptive signal processing using nonlinear functions. EURASIP Journal on Advances in Signal Processing, 2008, 1–9.zbMATHGoogle Scholar
  40. 40.
    Cheng, Y., & Pesavento, M. (2012). Joint optimization of source power allocation and distributed relay beamforming in multiuser peer-to-peer relay networks. IEEE Transactions on Signal Processing, 60(6), 2962–2973.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Bornhorst, N., Pesavento, M., & Gershman, A. (2012). Distributed beamforming for multi-group multicasting relay networks. IEEE Transactions on Signal Processing, 60(1), 221–232.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Winston, W. L., & Goldberg, J. B. (2004). Operations research: Applications and algorithms. Boston: Duxbury Press.Google Scholar
  43. 43.
    Yan, L., Bai, B., & Chen, W. (2014). On energy efficiency maximization in downlink MIMO systems exploiting multiuser diversity. IEEE Communications Letters, 18(12), 2161–2164.CrossRefGoogle Scholar
  44. 44.
    Yang, Y., Quek, T., & Duan, L. (2014). Backhaul-constrained small cell networks: Refunding and QoS provisioning. IEEE Transactions on Wireless Communications, 13(9), 5148–5161.CrossRefGoogle Scholar
  45. 45.
    Jin, Y., & Zhang, Y. (2010). Joint source and relay power optimization in multiuser cooperative wireless networks. In Proceedings of 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 1–4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lei Chen
    • 1
  • F. Richard Yu
    • 2
  • Hong Ji
    • 1
  • Bo Rong
    • 3
  • Victor C. M. Leung
    • 4
  1. 1.Key Laboratory of Universal Wireless CommunicationsBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.Department of Systems and Computer EngineeringCarleton UniversityOttawaCanada
  3. 3.Communications Research CentreOttawaCanada
  4. 4.Department of Electrical and Computer EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations