Wireless Networks

, Volume 24, Issue 3, pp 867–884 | Cite as

CRISP: cooperation among smartphones to improve indoor position information

  • Chen Qiu
  • Matt W. Mutka


Accurate indoor location information remains a challenge without incorporating extensive fingerprinting approaches or sophisticated infrastructures within buildings. Nevertheless, modern smartphones are equipped with sensors and radios that can detect movement and can be used to predict location. Dead reckoning applications on a smartphone may attempt to track a person’s movement or locate a person within an indoor environment. Nevertheless, smartphone positioning applications continue to be inaccurate. We propose a new approach, CRISP—cooperating to improve smartphone positioning, which assumes that dead reckoning has inaccuracies, but leverages opportunities of the interaction of multiple smartphones. Each smartphone computes its own position, and then shares it with other nearby smartphones. The signal strengths of multiple radios that are used on smartphones estimate distances between the devices. While individual smartphones may provide some positioning (possibly inaccurate) information, accuracy may improve when several smartphones cooperate and share position information through multiple iterations. Via indoor experimentation and simulation, we evaluate our approach and believe it is promising as an inexpensive and passive means to improve position information without complex data training and fusion. The accuracy of CRISP is within a meter. In addition, CRISP possibly leads to better results for a number of applications, including exercise profiling.


Indoor positioning Smartphone Pedometer 


  1. 1.
    Küpper, A. (2005). Location-based services: Fundamentals and operation. Hobeken, NJ: Wiley.CrossRefGoogle Scholar
  2. 2.
    Misra, P., & Enge, P. (2006). Global positioning system: Signals, measurements and performance (2nd ed.). Lincoln, MA: Ganga-Jamuna Press.Google Scholar
  3. 3.
    Fukuju, Y., Minami, M., Morikawa, H., & Aoyama, T. (2003). Dolphin: An autonomous indoor positioning system in ubiquitous computing environment. In WSTFEUS (pp. 53–56).Google Scholar
  4. 4.
    Priyantha, N. B. (2005). The cricket indoor location system. Ph.D. dissertation. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar
  5. 5.
    Ni, L., Liu, Y., Lau, Y., & Patil, A. (2004). Landmarc: Indoor location sensing using active RFID. Springer Wireless Networks, 10(6), 701–710.CrossRefGoogle Scholar
  6. 6.
    Yang, L., Chen, Y., Li, X., Xiao, C., Li, M., & Liu, Y. (2014). Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In Proceedings of the ACM MobiCom (pp. 237–248).Google Scholar
  7. 7.
    Liu, T., Yang, L., Lin, Q., Guo, Y., & Liu, Y. (2014). Anchor-free backscatter positioning for RFID tags with high accuracy. In Proceedings of the IEEE INFOCOM (pp. 379–387).Google Scholar
  8. 8.
    Youssef, M., Mah, M., & Agrawala, A. (2007). Challenges: Device-free passive localization for wireless environments. In Proceedings of the ACM MobiCom (pp. 222–229).Google Scholar
  9. 9.
    Bahl, P., & Padmanabhan, V. (2000). Radar: An in-building rfbased user location and tracking system. In Proceedings of the IEEE INFOCOM (pp. 775–784).Google Scholar
  10. 10.
    Yang, Z., Zhou, Z., & Liu, Y. (2013). From RSSI to CSI: Indoor localization via channel response. ACM Computing Surveys, 46(2), 25–32.CrossRefzbMATHGoogle Scholar
  11. 11.
    Xu, C., Firner, B., Moore, R., Zhang, Y., Trappe, W., Howard, R., et al. (2013). SCPL: Indoor devicefree multi-subject counting and localization using radio signal strength. In ‘Proceedings of the IEEE/ACM IPSN (pp. 79–90).Google Scholar
  12. 12.
    Steinhoff, U., & Schiele, B. (2010). Dead reckoning from the pocket-an experimental study. In Proceedings of the IEEE PerCom (pp. 162–170).Google Scholar
  13. 13.
  14. 14.
    Kuo, Y., Pannuto, P., Hsiao, K., & Dutta, P. (2014). Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the ACM MobiCom (pp. 447–458).Google Scholar
  15. 15.
    Xu, Q., Zheng, R., & Hranilovic, S. (2015). Idyll: Indoor localization using inertial and light sensors on smartphones. In Proceedings of the ACM UbiComp (pp. 307–318).Google Scholar
  16. 16.
    Tung, Y., & Shin, K. (2015). Echotag: Accurate infrastructure-free indoor location tagging with smartphones. In Proceedings of the ACM MobiCom (pp. 525–536).Google Scholar
  17. 17.
    Wu, C., Yang, Z., Liu, Y., & Xi, W. (2013). Will: Wireless indoor localization without site survey. IEEE Transactions on Parallel and Distributed Systems, 24(4), 839–848.CrossRefGoogle Scholar
  18. 18.
    Banerjee, N., Agarwal, S., Bahll, P., & Chandra, R. (2010). Virtual compass: Relative positioning to sense mobile social interactions. In Proceedings of the ACM pervasive (pp. 1–21).Google Scholar
  19. 19.
    Liu, H., et al. (2014). Accurate WiFi based localization for smartphones using peer assistance. IEEE Transactions on Mobile Computing, 13(10), 2199–2214.CrossRefGoogle Scholar
  20. 20.
    Tversky, A., & Gati, I. (1982). Similarity, separability, and the triangle inequality. American Psychological Association Psychological Review, 89(2), 123.Google Scholar
  21. 21.
    Wang, L., Hu, W., & Tan, T. (2003). Recent developments in human motion analysis. Elsevier Pattern Recognition, 36(3), 585–601.CrossRefGoogle Scholar
  22. 22.
    Bluetooth, S. (2010). Bluetooth specification.Google Scholar
  23. 23.
    Baronti, P., Pillai, P., Chook, V., Chessa, S., Gotta, A., & Hu, Y. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Elsevier Computer Communications, 30(7), 1655–1695.CrossRefGoogle Scholar
  24. 24.
    Inoue, S., & Hattori, Y. (2011). Toward high-level activity recognition from accelerometers on mobile phones. In Proceedings of the IEEE iThings/CPSCom (pp. 225–231).Google Scholar
  25. 25.
    Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., & Zhao, F. (2012). A reliable and accurate indoor localization method using phone inertial sensors. In Proceedings of the ACM UbiComp (pp. 421–430).Google Scholar
  26. 26.
    Hilsenbeck, S., Bobkov, D., Schroth, G., Huitl, R., & Steinbach, E. (2014). Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning. In Proceedings of the ACM UbiComp (pp. 147–158).Google Scholar
  27. 27.
    Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., et al. (2005). TinyOS: An operating system for sensor networks. In W. Weber, J. Rabaey, & E. H. Aarts (Eds.), Ambient intelligence (pp. 115–148). Berlin: Springer.CrossRefGoogle Scholar
  28. 28.
    Maghdid, H. S., Lami, I. A., Ghafoor, K. Z., & Lloret, J. (2016). Seamless outdoors–indoors localization solutions on smartphones: Implementation and challenges. ACM Computing Surveys, 48(4), article. 53.Google Scholar
  29. 29.
    Qiu, C., & Mutka, M. W. (2016). iFrame: Dynamic indoor map construction through automatic mobile sensing. In Proceedings of the IEEE PerCom (pp. 1–9).Google Scholar
  30. 30.
  31. 31.
  32. 32.
    Battery Widget Pro.
  33. 33.
    Chon, Y., Talipov, E., Shin, H., & Cha. H. (2011). Mobility prediction-based smartphone energy optimization for everyday location monitoring. In Proceedings of the ACM SenSys (pp. 82–95).Google Scholar
  34. 34.
    Dissanayake, M., Newman, P., Clark, S., Durrant, H., & Csorba, M. (2001). A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.CrossRefGoogle Scholar
  35. 35.
    Suger, B., Tipaldi, G., Spinello, L., & Burgard, W. (2014). An approach to solving large-scale slam problems with a small memory footprint. In Proceedings of the IEEE ICRA (pp. 3632–3637).Google Scholar
  36. 36.
    Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information System, 10(1), 91–102.CrossRefGoogle Scholar
  37. 37.
    Hightower, J., Want, R., & Borriello, G. (2000). Spoton: An indoor 3D location sensing technology based on RF signal strength, UW CSE 00-02-02, vol. 1. University of Washington, Department of Computer Science and Engineering.Google Scholar
  38. 38.
    Bellavista, P., Corradi, A., & Giannelli, C. (2008). A layered infrastructure for mobility-aware best connectivity in theheterogeneous wireless internet. In Proceedings of the ACM MobilWare (vol. 25).Google Scholar
  39. 39.
    Bellavista, P., Corradi, A., & Giannelli, C. (2005). Efficiently managing location information with privacy requirements in wi-fi networks: A middleware approach. In Proceedings of the IEEE ISWCS (pp. 91–95).Google Scholar
  40. 40.
    Seifeldin, M., Saeed, A., Kosba, A., El-Keyi, A., & Youssef, M. (2013). Nuzzer: A large-scale device-free passive localization system for wireless environments. IEEE Transactions Mobile Computing, 12(7), 1321–1334.CrossRefGoogle Scholar
  41. 41.
    Chintalapudi, K., Lyer, A., & Padmanabhan, V. (2010). Indoor localization without the pain. In Proceedings of the ACM MobiCom (pp. 173–184).Google Scholar
  42. 42.
    Kotaru, M., Joshi, K., Bharadia, D., & Katti, S. (2015). SpotFi: Decimeter level localization using WiFi. In Proceedings of the ACM SIGCOMM (pp. 269–282).Google Scholar
  43. 43.
    Vasisht, D., Kumar, S., & Katabi, D. (2016). Decimeter-level localization with a single WiFi access point. In Proceedings of the USENIX NSDI (pp. 165–178).Google Scholar
  44. 44.
    Azizyan, M., Constandache, I., & Choudhury, R. R. (2009). Surroundsense: Mobile phone localization using ambient sound and light. In Proceedings of the ACM MobiCom (pp. 261–272).Google Scholar
  45. 45.
    Chon, J., & Cha, H. (2011). Lifemap: A smartphone-based context provider for location-based services. IEEE Pervasive Computing, 2, 58–67.CrossRefGoogle Scholar
  46. 46.
    Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., & Choudhury, R. R. (2012). No need to war-drive: Unsupervised indoor localization. In Proceedings of the ACM MobiSys (pp. 197–210).Google Scholar
  47. 47.
    Mariakakis, A., Sen, S., Lee, J., & Kim, K. (2014). Sail: Single access point-based indoor localization. In Proceedings of the ACM MobiSys (pp. 315–328).Google Scholar
  48. 48.
    Yang, Z., Wang, Z., Zhang, J., Huang, C., & Zhang, Q. (2015). Wearables can afford: Light-weight indoor positioning with visible light. In Proceedings of the ACM MobiSys (pp. 317–330).Google Scholar
  49. 49.
    Roy, N., Wang, H., & Choudhury, R. R. (2014). I am a smartphone and i can tell my user’s walking direction. In Proceedings of the ACM MobiSys (pp. 329–342).Google Scholar
  50. 50.
    Rai, A., Chintalapudi, K., Padmanabhan, V., & Sen, R. (2012). Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of the ACM MobiCom (pp. 293–304).Google Scholar
  51. 51.
    Liu, K., Liu, X., & Li, X. (2013). Guoguo: Enabling fine-grained indoor localization via smartphone. In Proceedings of the ACM MobiSys (pp. 235–248).Google Scholar
  52. 52.
    Sen, S., Lee, J., Kim, K., & Congdon, P. (2013). Avoiding multipath to revive inbuilding WiFi localization. In Proceedings of the ACM MobiSys (pp. 249–262).Google Scholar
  53. 53.
    Hongman, W., Xiaocheng, Z., & Jiangbo, C (2011). Acceleration and orientation multisensor pedometer application design and implementation on the android platform. In Proceedings of the IEEE IMCCC (pp. 249–253).Google Scholar
  54. 54.
  55. 55.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA

Personalised recommendations