Scheduled WiFi using distributed contention in WLANs: algorithms, experiments, and case-studies

  • Chao-Fang Shih
  • Bhuvana Krishnaswamy
  • Yubing Jian
  • Raghupathy Sivakumar
Article
  • 126 Downloads

Abstract

The ubiquitous adoption of WiFi introduces large diversity in types of application requirements and topological characteristics. Consequently, considerable attention is being devoted to making WiFi networks controllable without compromising their scalability. However, the main MAC protocol of WiFi, distributed coordination function (DCF), is a contention-based protocol using random backoff. Thus, operating under DCF, the access of channel is hard to control and nonpredictable. In order to provide controllability of channel access in WiFi, we propose Rhythm, a MAC protocol that achieves scheduled WiFi efficiently using distributed contention. By achieving scheduled WiFi, channel access can be controlled by manipulating the schedule decision. We evaluate the performance of Rhythm through analysis, experiments, and case-studies.

Keywords

WLAN 802.11 MAC Scheduled WiFi 

References

  1. 1.
  2. 2.
    Calhoun, P., et al. (2009). Configuration and provisioning for wireless access points (CAPWAP) protocol specification. In IETF, RFC 5415.Google Scholar
  3. 3.
    Calhoun, P., et al. (2010). Light weight access point protocol. In IETF, RFC 5412.Google Scholar
  4. 4.
    IEEE Std. (2008). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 1: Radio resource measurement of wireless LANs. In 802.11k-2008.Google Scholar
  5. 5.
    Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In HotSDN.Google Scholar
  6. 6.
    Yang, X., & Vaidya, N. (2006). A wireless MAC protocol using implicit pipelining. IEEE Transactions on Mobile Computing, 5, 258–273.CrossRefGoogle Scholar
  7. 7.
    Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. In ACM SIGCOMM.Google Scholar
  8. 8.
    Djukie, P., & Mohapatra, P. (2009). Soft-TDMAC: A software TDMA-based MAC over commodity 802.11 hardware. In IEEE INFOCOM.Google Scholar
  9. 9.
    Zhou, W., Li, D., Srinivasan, K., & Sinha, P. (2013). Domino: Relative scheduling in enterprise wireless LANs. In ACM CoNEXT.Google Scholar
  10. 10.
    IEEE Std. (2012). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In 802.11-2012.Google Scholar
  11. 11.
    Wireless open-Access Research Platform (WARP). https://www.mangocomm.com/products/kits/warp-v3-kit.
  12. 12.
  13. 13.
    Openflow: Enabling innovation in your network. http://www.openflow.org/.
  14. 14.
    Vestin, J., Dely, P., Kassler, A., Bayer, N., Einsiedler, H., & Peylo, C. (2013). Cloudmac: Towards software defined WLANs. In ACM SIGMOBILE.Google Scholar
  15. 15.
    Shrivastava, V., et al. (2009). CENTAUR: Realizing the full potential of centralized WLANs through a hybrid data path. In ACM MobiCom.Google Scholar
  16. 16.
    Zeng, Z., Gao, Y., Tan, K., & Kumar, P. R. (2011). Chain: Introducing minimum controlled coordination into random access MAC. In IEEE INFOCOM.Google Scholar
  17. 17.
    Gollakota, S., & Katabi, D. (2008). ZigZag decoding: Combating hidden terminals in wireless networks. In ACM SIGCOMM.Google Scholar
  18. 18.
    Cheng, Y.-C., et al. (2006). Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis. In ACM SIGCOMM.Google Scholar
  19. 19.
    Shrivastava, V., Rayanchu, S., Banerjee, S., & Papagiannaki, K. (2011). PIE in the sky: Online passive interference estimation for enterprise WLANs. In NSDI.Google Scholar
  20. 20.
    Bansal, T., Chen, B., Sinha, P., & Srinivasan, K. (2013). Symphony: Cooperative packet recovery over the wired backbone in enterprise WLANs. In ACM MobiCom.Google Scholar
  21. 21.
  22. 22.
  23. 23.
  24. 24.
    Rozner , E., Navda, V., Ramjee, R., & Rayanchu, S. (2010). NAPman: Network-assisted power management for WiFi devices. In ACM MobiSys.Google Scholar
  25. 25.
    Manweiler, J., & Choudhury, R. (2011). Avoiding the rush hours: WiFi energy management via traffic isolation. In ACM MobiSys.Google Scholar
  26. 26.
    Liu, J., & Zhong, L. (2008). Micro power management of active 802.11 interface. In ACM MobiSys.Google Scholar
  27. 27.
    Zhang, X., & Shin, K. G. (2012). E-MiLi: Energy-minimizing idle listening in wireless networks. IEEE Transactions on Mobile Computing, 11, 1441–1454.CrossRefGoogle Scholar
  28. 28.
    Xiao, Y., Savolainen, P., & Karppanen, A. (2010). Practical power modeling of data transmission over 802.11g for wireless applications. In IMC.Google Scholar
  29. 29.
    Qiao, D., & Shin, K. G. (2002). Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF. In Quality of Service.Google Scholar
  30. 30.
    Bejerano, Y., & Bhatia, R. S. (2006). MiFi: A framework for fairness and QoS assurance for current IEEE 802.11 networks with multiple access points. In IEEE/ACM TON.Google Scholar
  31. 31.
    Park, E.-C., & Kim, H. (2010). TCP-aware bidirectional bandwidth allocation in IEEE 802.16 networks. Wireless Network, 16, 2123–2138.CrossRefGoogle Scholar
  32. 32.
    Ghaderi, M., Sridharan, A., Zang, H., Towsley, D., & Cruz, R. (2009). TCP-aware channel allocation in CDMA networks. TMC, 8, 14–28.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chao-Fang Shih
    • 1
  • Bhuvana Krishnaswamy
    • 1
  • Yubing Jian
    • 1
  • Raghupathy Sivakumar
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations