Skip to main content

Practical deniable authentication for pervasive computing environments

Abstract

Pervasive computing environments allow users to get services anytime and anywhere. Security has become a great challenge in pervasive computing environments because of its heterogeneity, openness, mobility and dynamicity. In this paper, we propose two heterogeneous deniable authentication protocols for pervasive computing environments using bilinear pairings. The first protocol allows a sender in a public key infrastructure (PKI) environment to send a message to a receiver in an identity-based cryptography (IBC) environment. The second protocol allows a sender in the IBC environment to send a message to a receiver in the PKI environment. Our protocols admits formal security proof in the random oracle model under the bilinear Diffie–Hellman assumption. In addition, our protocols support batch verification that can speed up the verification of authenticators. The characteristic makes our protocols useful in pervasive computing environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Alomair, B., & Poovendran, R. (2014). Efficient authentication for mobile and pervasive computing. IEEE Transactions on Mobile Computing, 13(3), 469–481.

    Article  MATH  Google Scholar 

  2. 2.

    Bettini, C., & Riboni, D. (2015). Privacy protection in pervasive systems: State of the art and technical challenges. Pervasive and Mobile Computing, 17, 159–174.

    Article  Google Scholar 

  3. 3.

    Ren, K., Lou, W., Kim, K., & Deng, R. (2006). A novel privacy preserving authentication and access control scheme for pervasive computing environments. IEEE Transactions on Vehicular Technology, 55(4), 1373–1384.

    Article  Google Scholar 

  4. 4.

    Long, M., & Wu, C. H. (2006). Energy-efficient and intrusion-resilient authentication for ubiquitous access to factory floor information. IEEE Transactions on Industrial Informatics, 2(1), 40–47.

    Article  Google Scholar 

  5. 5.

    Yao, L., Wang, L., Kong, X., Wu, G., & Xia, F. (2010). An inter-domain authentication scheme for pervasive computing environment. Computers and Mathematics with Applications, 60(2), 234–244.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Tan, Z. (2012). A lightweight conditional privacy-preserving authentication and access control scheme for pervasive computing environments. Journal of Network and Computer Applications, 35(6), 1839–1846.

    Article  Google Scholar 

  7. 7.

    Park, J. H. (2012). An authentication protocol offering service anonymity of mobile device in ubiquitous environment. Journal of Supercomputing, 62(1), 105–117.

    Article  Google Scholar 

  8. 8.

    Mayrhofer, R., Fuß, J., & Ion, I. (2013). UACAP: A unified auxiliary channel authentication protocol. IEEE Transactions on Mobile Computing, 12(4), 710–721.

    Article  Google Scholar 

  9. 9.

    Wu, Z. Y., Wu, J. C., Lin, S. C., & Wang, C. (2014). An electronic voting mechanism for fighting bribery and coercion. Journal of Network and Computer Applications, 40, 139–150.

    Article  Google Scholar 

  10. 10.

    Harn, L., & Ren, J. (2008). Design of fully deniable authentication service for e-mail applications. IEEE Communications Letters, 12(3), 219–221.

    Article  Google Scholar 

  11. 11.

    Aumann, Y., & Rabin, M. (1998). Authentication enhanced security and error correcting codes. In Proceedings of CRYPTO’98, LNCS 1462 (pp. 299–303). Berlin: Springer.

  12. 12.

    Boneh, D., & Franklin, M. (2003). Identity-based encryption from the weil pairing. SIAM Journal on Computing, 32(3), 586–615.

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Wang, B., & Song, Z. (2009). A non-interactive deniable authentication scheme based on designated verifier proofs. Information Sciences, 179(6), 858–865.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Raimondo, M. D., & Gennaro, R. (2009). New approaches for deniable authentication. Journal of Cryptology, 22(4), 572–615.

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Youn, T. Y., Lee, C., & Park, Y. H. (2011). An efficient non-interactive deniable authentication scheme based on trapdoor commitment schemes. Computer Communications, 34(3), 353–357.

    Article  Google Scholar 

  16. 16.

    Li, F., & Takagi, T. (2013). Cryptanalysis and improvement of robust deniable authentication protocol. Wireless Personal Communications, 69(4), 1391–1398.

    Article  Google Scholar 

  17. 17.

    Shi, Y., & Li, J. (2005). Identity-based deniable authentication protocol. Electronics Letters, 41(5), 241–242.

    Article  Google Scholar 

  18. 18.

    Li, F., Xiong, P., & Jin, C. (2014). Identity-based deniable authentication for ad hoc networks. Computing, 96(9), 843–853.

    Article  MATH  Google Scholar 

  19. 19.

    Yao, A. C., & Zhao, Y. (2014). Privacy-preserving authenticated key-exchange over Internet. IEEE Transactions on Information Forensics and Security, 9(1), 125–140.

    Article  Google Scholar 

  20. 20.

    Li, F., Zhang, H., & Takagi, T. (2013). Efficient signcryption for heterogeneous systems. IEEE Systems Journal, 7(3), 420–429.

    Article  Google Scholar 

  21. 21.

    Li, F., & Xiong, P. (2013). Practical secure communication for integrating wireless sensor networks into the Internet of things. IEEE Sensors Journal, 13(10), 3677–3684.

    Article  Google Scholar 

  22. 22.

    Cha, J. C., & Cheon, J. H. (2003). An identity-based signature from gap Diffie–Hellman groups. In Proceedings of PKC 2003, LNCS 2567 (pp. 18–30). Berlin: Springer.

  23. 23.

    Pointcheval, D., & Stern, J. (2000). Security arguments for digital signatures and blind signatures. Journal of Cryptology, 13(3), 361–396.

    Article  MATH  Google Scholar 

  24. 24.

    PBC Library. http://crypto.stanford.edu/pbc/.

  25. 25.

    Daemen, J., & Rijmen, V. (2002). The design of Rijndael: AES–The Advanced Encryption Standard. Berlin: Springer.

    Book  MATH  Google Scholar 

  26. 26.

    Shim, K. A. (2012). CPAS: An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks. IEEE Transactions on Vehicular Technology, 61(4), 1874–1883.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61073176, 61272525, 61302161 and 61462048), the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2013J069) and Doctoral Fund of Ministry of Education (Grant No. 20130181120076).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fagen Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Hong, J. & Omala, A.A. Practical deniable authentication for pervasive computing environments. Wireless Netw 24, 139–149 (2018). https://doi.org/10.1007/s11276-016-1317-9

Download citation

Keywords

  • Pervasive computing
  • Security
  • Authentication
  • Deniable authentication
  • Heterogeneity