Wireless Networks

, Volume 24, Issue 1, pp 27–47 | Cite as

SALA: Smartphone-Assisted Localization Algorithm for Positioning Indoor IoT Devices

  • Jaehoon (Paul) Jeong
  • Solchan Yeon
  • Taemoon Kim
  • Hyunsoo Lee
  • Song Min Kim
  • Sang-Chul Kim


This paper proposes a Smartphone-Assisted Localization Algorithm (SALA) for the localization of Internet of Things (IoT) devices that are placed in indoor environments (e.g., smart home, smart office, smart mall, and smart factory). This SALA allows a smartphone to visually display the positions of IoT devices in indoor environments for the easy management of IoT devices, such as remote-control and monitoring. A smartphone plays a role of a mobile beacon that tracks its own position indoors by a sensor-fusion method with its motion sensors, such as accelerometer, gyroscope, and magnetometer. While moving around indoor, the smartphone periodically broadcasts short-distance beacon messages and collects the response messages from neighboring IoT devices. The response messages contains IoT device information. The smartphone stores the IoT device information in the response messages along with the message’s signal strength and its position into a dedicated server (e.g., home gateway) for the localization. These stored trace data are processed offline through our localization algorithm along with a given indoor layout, such as apartment layout. Through simulations, it is shown that our SALA can effectively localize IoT devices in an apartment with position errors less than 20 cm in a realistic apartment setting.


Indoor Localization Algorithm Smartphone IoT Device Trajectory 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014006438). This work was also partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) [10041244, SmartTV 2.0 Software Platform].


  1. 1.
    Cook, D. J., Youngblood, M., Heierman, III, E. O., Gopalratnam, K., Rao, S., Litvin, A., & Khawaja, F. (2003). MavHome: An agent-based smart home. In PerCom, Fort Worth, TX, USA, March 2003. IEEE.Google Scholar
  2. 2.
    AllJoyn Framework. AllSeen Alliance: A leading internet of things initiative.
  3. 3.
    Shala, U., & Rodriguez, A.. (2011). Indoor positioning using sensor-fusion in android devices. Technical report, 2011.
  4. 4.
    Chintalapudi, K., Padmanabha Iyer, A., & Padmanabhan, V. N. (2010). Indoor localization without the pain. ACM Mobicom, September 2010.Google Scholar
  5. 5.
    He, X., Badiei, S., Aloi, D., & Li, J. (2013). WiFi iLocate: WiFi based indoor localization for smartphone. In Wireless telecommunications symposium. April 2013.Google Scholar
  6. 6.
    Jiang, J.-A., Zheng, X.-Y., Chen, Y.-F., Wang, C.-H., Chen, P.-T., Chuang, C.-L., & Chen, C.-P. (2013). A distributed RSS-based localization using a dynamic circle expanding mechanism. IEEE Sensors Journal, 13(10), 3754–3766.CrossRefGoogle Scholar
  7. 7.
    Otsason, V., Varshavsky, A., LaMarca, A., & de Lara, E. (2005). Accurate GSM indoor localization. In International conference on ubiquitous computing. September 2005.Google Scholar
  8. 8.
    Liu, H., Yang, J., Sidhom, S., Wang, Y., Chen, Y., & Ye, F. (2014). Accurate WiFi based localization for smartphones using peer assistance. IEEE Transactions on Mobile Computing, 13(10), 2199–2214.CrossRefGoogle Scholar
  9. 9.
    Liu, K., Liu, X., & Li, X. (2013). Guoguo: Enabling fine-grained indoor localization via smartphone. In MobiSys. ACM, June 2013.Google Scholar
  10. 10.
    Hsu, H.-H., Peng, W.-J., Shih, T. K., Pai, T.-W., & Man, K. L. (2014). Smartphone indoor localization with accelerometer and gyroscope. In International conference on network-based information systems, September 2014.Google Scholar
  11. 11.
    Liu, J., Chen, R., Pei, L., Guinness, R., & Kuusniemi, H. (2012). A hybrid smartphone indoor positioning solution for mobile LBS. In Sensors, December 2012.Google Scholar
  12. 12.
    Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., & Zhao, F. (2012). A reliable and accurate indoor localization method using phone inertial sensors. In Proceedings of the 2012 ACM conference on ubiquitous computing, UbiComp ’12, pages 421–430, New York, NY, USA, 2012. ACM.Google Scholar
  13. 13.
    Jun, J., Gu, Y.., Cheng, L., Sun, J., Zhu, T., & Niu, J. (2013). Social-Loc: Improving indoor localization with social sensing. In SenSys. ACM, November 2013.Google Scholar
  14. 14.
    Priyantha, N. B., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system. In MOBICOM. ACM, August 2000.Google Scholar
  15. 15.
    Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In INFOCOM. IEEE, March 2003.Google Scholar
  16. 16.
    Niculescu, Dragos, & Nath, Badri. (2003). DV based positioning in Ad hoc networks. Telecommunication Systems, 22(1), 267–280.CrossRefGoogle Scholar
  17. 17.
    Chen, H., Sezaki, K., Deng, P., & Cheung So, H. (2008). An improved DV-Hop localization algorithm for wireless sensor networks. IEEE, In ICIEA. June 2008.Google Scholar
  18. 18.
    Yu, N., Wan, J., Song, Q., & Wu, Y. (2006). An improved DV-hop localization algorithm in wireless sensor networks. In ICIA. IEEE, August 2006.Google Scholar
  19. 19.
    Chen, H., Sezaki, K., Deng, P., & Cheung So, H. (2012). Improved DV-hop localization algorithm for wireless sensor networks. In SISY., IEEE, September 2012.Google Scholar
  20. 20.
    Zhong, Z., & He, T. (2009) Achieving range-free localization beyond connectivity. In SenSys, November 2009.Google Scholar
  21. 21.
    Zhong, Z., Zhu, T., Wang, D., & He, T. (2009). Tracking with unreliable node sequences. In INFOCOM., IEEE, April 2009.Google Scholar
  22. 22.
    Feng, C., Au, W. S. A., Valaee, S., & Tan, Z. (2012). Received-signal-strength-based indoor positioning using compressive sensing. Transactions on Mobile Computing, 11(12), 1983–1993.CrossRefGoogle Scholar
  23. 23.
    Koweerawong, C., Wipusitwarakun, K., & Kaemarungsi, K. (2013). Indoor localization improvement via adaptive RSS fingerprinting database. In ICOIN., IEEE, January 2013.Google Scholar
  24. 24.
    Chen, Y., Lymberopoulos, D., Liu, J., & Priyantha, B. (2012). FM-based indoor localization. In MobiSys., ACM, June 2012.Google Scholar
  25. 25.
    Matic, A., Papliatseyeu, A., Osmani, V., & Mayora-Ibarra, O. (2010). Tuning to your position: FM radio based indoor localization with spontaneous recalibration. In PerCom., IEEE, March 2010.Google Scholar
  26. 26.
    Ruiz-Ruiz, Antonio J., Canovas, Oscar, Rubio Muñoz, Ruben A., & Lopez de Teruel Alcolea, Pedro E. (2012). Using SIFT and WiFi signals to provide location-based services for smartphones. LNICST, 104, 37–48.Google Scholar
  27. 27.
    Nirjon, S., Dickerson, R. F., Asare, P., Li, Q., Hong, D., Stankovic, J. A., Hu, P., Shen, G., & Jiang, X. (2013). Auditeur: A mobile-cloud service platform for acoustic event detection on smartphones. In MobiSys., ACM, June 2013.Google Scholar
  28. 28.
    Martin, P., Ho, B.-J., Grupen, N., Muñoz, S., & Srivastava, M. (2014). An iBeacon primer for indoor localization. In BuildSys., ACM, November 2014.Google Scholar
  29. 29.
    Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2006). Models and solutions for radio irregularity in wireless sensor networks. ACM Transactions on Sensor Networks, 2(2), 221–262.CrossRefGoogle Scholar
  30. 30.
    OMNeT++. Discrete Event Simulator for Networks.
  31. 31.
    Hyytiä, E., & Virtamo, J. (2007). Random waypoint mobility model in cellular networks. Wireless Networks, 13(2), 177–188.CrossRefGoogle Scholar
  32. 32.
    Chung, J., Donahoe, M., Schmandt, C., Kim, I.-J., Razavai, P., & Wiseman, M. (2011). Indoor location sensing using geo-magnetism. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pp.141–154, New York, NY, USA, 2011. ACM.Google Scholar
  33. 33.
    Raspberry Pi. IoT Devices.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jaehoon (Paul) Jeong
    • 1
  • Solchan Yeon
    • 2
  • Taemoon Kim
    • 3
  • Hyunsoo Lee
    • 3
  • Song Min Kim
    • 4
  • Sang-Chul Kim
    • 2
  1. 1.Department of Interaction ScienceSungkyunkwan UniversitySuwonSouth Korea
  2. 2.School of Computer ScienceKookmin UniversitySeoulSouth Korea
  3. 3.Department of SoftwareSungkyunkwan UniversitySuwonSouth Korea
  4. 4.Department of Computer ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations