Wireless Networks

, Volume 23, Issue 7, pp 2021–2036 | Cite as

Location prediction algorithm for a nonlinear vehicular movement in VANET using extended Kalman filter

Article

Abstract

Vehicular ad-hoc network (VANET) is an essential component of the intelligent transportation system, that facilitates the road transportation by giving a prior alert on traffic condition, collision detection warning, automatic parking and cruise control using vehicle to vehicle (V2V) and vehicle to roadside unit (V2R) communication. The accuracy of location prediction of the vehicle is a prime concern in VANET which enhances the application performance such as automatic parking, cooperative driving, routing etc. to give some examples. Generally, in a developed country, vehicle speed varies between 0 and 60 km/h in a city due to traffic rules, driving skills and traffic density. Likewise, the movement of the vehicle with steady speed is highly impractical. Subsequently, the relationship between time and speed to reach the destination is nonlinear. With reference to the previous work on location prediction in VANET, nonlinear movement of the vehicle was not considered. Thus, a location prediction algorithm should be designed by considering nonlinear movement. This paper proposes a location prediction algorithm for a nonlinear vehicular movement using extended Kalman filter (EKF). EKF is more appropriate contrasted with the Kalman filter (KF), as it is designed to work with the nonlinear system. The proposed prediction algorithm performance is measured with the real and model based mobility traces for the city and highway scenarios. Also, EKF based prediction performance is compared with KF based prediction on average Euclidean distance error (AEDE), distance error (DE), root mean square error (RMSE) and velocity error (VE).

Keywords

Extended Kalman filter Location Nonlinear movement Prediction VANET 

References

  1. 1.
    Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392.CrossRefGoogle Scholar
  2. 2.
    Alam, N., Tabatabaei Balaei, A., & Dempster, A. G. (2013). Relative positioning enhancement in vanets: A tight integration approach. IEEE Transactions on Intelligent Transportation Systems, 14(1), 47–55.CrossRefGoogle Scholar
  3. 3.
    Anagnostopoulos, T., Anagnostopoulos, C., & Hadjiefthymiades, S. (2011). An adaptive location prediction model based on fuzzy control. Computer Communications, 34(7), 816–834.CrossRefMATHGoogle Scholar
  4. 4.
    Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRefGoogle Scholar
  5. 5.
    Bavdekar, V. A., Deshpande, A. P., & Patwardhan, S. C. (2011). Identification of process and measurement noise covariance for state and parameter estimation using extended kalman filter. Journal of Process Control, 21(4), 585–601.CrossRefGoogle Scholar
  6. 6.
    Boukerche, A. (2008). Algorithms and protocols for wireless mobile ad-hoc networks. London: Wiley.CrossRefMATHGoogle Scholar
  7. 7.
    Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding rmse in the literature. Geoscientific Model Development, 7(3), 1247–1250.CrossRefGoogle Scholar
  8. 8.
    Chen, P., Ma, H., Gao, S., & Huang, Y. (2015). Modified extended kalman filtering for tracking with insufficient and intermittent observations. Mathematical Problems in Engineering, 2015, Article ID 981727. doi:10.1155/2015/981727.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Drawil, N., & Basir, O. (2008). Vehicular collaborative technique for location estimate correction. In: IEEE 68th Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE, pp. 1–5.Google Scholar
  10. 10.
    Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for dtns. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.Google Scholar
  11. 11.
    Feng, H., Liu, C., Shu, Y., & Yang, O. W. (2015). Location prediction of vehicles in vanets using a Kalman filter. Wireless Personal Communications, 80(2), 543–559.CrossRefGoogle Scholar
  12. 12.
    Feng, Z., Zhu, Y., Zhang, Q., Ni, L. M., & Vasilakos, A. V. (2014). Trac: Truthful auction for location-aware collaborative sensing in mobile crowdsourcing. In: INFOCOM, 2014 Proceedings IEEE, IEEE, pp. 1231–1239.Google Scholar
  13. 13.
    Fülöp, P., Imre, S., Szabó, S., & Szálka, T. (2009). The accuracy of location prediction algorithms based on markovian mobility models. International Journal of Mobile Computing and Multimedia Communications, 1(2), 1–21.CrossRefGoogle Scholar
  14. 14.
    Haklay, M. M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.CrossRefGoogle Scholar
  15. 15.
    Härri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). Vanetmobisim: Generating realistic mobility patterns for vanets. In: Proceedings of the 3rd international workshop on vehicular ad hoc networks, ACM, New York, NY, USA, VANET ’06, pp. 96–97.Google Scholar
  16. 16.
    Hu, C., Chen, W., Chen, Y., & Liu, D. (2003). Adaptive Kalman filtering for vehicle navigation. Positioning, 1(04), 0.Google Scholar
  17. 17.
    Jaiswal, R., & Jaidhar, C. (2015). An applicability of aodv and olsr protocols on ieee 802.11p for city road in vanet. In: Internet of things, smart spaces, and next generation networks and systems, Lecture Notes in Computer Science, Vol. 9247, Springer International Publishing, pp. 286–298.Google Scholar
  18. 18.
    Jiang, T., Wang, H., & Vasilakos, A. V. (2012). Qoe-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.CrossRefGoogle Scholar
  19. 19.
    Khan, R., Khan, S. U., Khan, S., & Khan, M. U. A. (2014). Localization performance evaluation of extended Kalman filter in wireless sensors network. Procedia Computer Science, 32, 117–124.CrossRefGoogle Scholar
  20. 20.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012a). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In: INFOCOM, 2012 Proceedings IEEE, IEEE, pp. 100–108.Google Scholar
  21. 21.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRefGoogle Scholar
  22. 22.
    Li, X., Mitton, N., & Simplot-Ryl, D. (2011). Mobility prediction based neighborhood discovery in mobile ad hoc networks. In: NETWORKING 2011, Springer, pp. 241–253.Google Scholar
  23. 23.
    Li, Z., Cai, Zx, Xp, Ren, Ab, Chen, & Zc, Xue. (2012b). Vehicle kinematics modeling and design of vehicle trajectory generator system. Journal of Central South University, 19, 2860–2865.CrossRefGoogle Scholar
  24. 24.
    Liu, J., Li, Y., Wang, H., Jin, D., Su, L., Zeng, L., et al. (2016). Leveraging software-defined networking for security policy enforcement. Information Sciences, 327(C), 288–299.CrossRefGoogle Scholar
  25. 25.
    Liu, K., & Lim, H. B. (2012). Positioning accuracy improvement via distributed location estimate in cooperative vehicular networks. In: 15th international IEEE conference on intelligent transportation systems (ITSC), 2012, IEEE, pp. 1549–1554.Google Scholar
  26. 26.
    Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Mo, Z., Zhu, H., Makki, K., & Pissinou, N. (2008). Mobility-assisted location management for vehicular ad hoc networks. In: IEEE Wireless communications and networking conference, 2008. WCNC 2008. IEEE, pp. 2224–2228.Google Scholar
  28. 28.
    Perkins, C., & Royer, E. (1999). Ad-hoc on-demand distance vector routing. In: Proceedings of second IEEE workshop on mobile computing systems and applications, 1999. WMCSA ’99. pp. 90–100.Google Scholar
  29. 29.
    Qureshi, K. N., & Abdullah, A. H. (2014). Localization-based system challenges in vehicular ad hoc networks: Survey. SmartCR, 4(6), 515–528.Google Scholar
  30. 30.
    Rad, H. J., Van Waterschoot, T., & Leus, G. (2011). Cooperative localization using efficient kalman filtering for mobile wireless sensor networks. In: 19th European, IEEE signal processing conference, 2011. pp. 1984–1988.Google Scholar
  31. 31.
    Raj, K. & Jaiswal, J. C. D. (2015). Edagf: Estimation and direction aware greedy forwarding for urban scenario in vehicular ad-hoc network. In: UIC-ATC-ScalCom-CBDCom-IoP, 2015 IEEE, pp. 814–821.Google Scholar
  32. 32.
    Reza, T. A., Barbeau, M., & Alsubaihi, B. (2013). Tracking an on the run vehicle in a metropolitan vanet. In: Intelligent vehicles Symposium (IV), 2013 IEEE, IEEE, pp. 220–227.Google Scholar
  33. 33.
    Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Review: Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396.CrossRefGoogle Scholar
  34. 34.
    Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.CrossRefGoogle Scholar
  35. 35.
    Sun, L., Wu, Y., Xu, J., & Xu, Y. (2012). An rsu-assisted localization method in non-gps highway traffic with dead reckoning and v2r communications. In: 2nd international conference on consumer electronics, communications and networks (CECNet), 2012, IEEE, pp. 149–152.Google Scholar
  36. 36.
    Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.CrossRefGoogle Scholar
  37. 37.
    Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. Tech. report, Chapel Hill, NC, USA.Google Scholar
  38. 38.
    Xiao, Y. Y., Zhang, H., & Wang, H. Y. (2007). Location prediction for tracking moving objects based on grey theory. In: Fourth international conference on fuzzy systems and knowledge discovery, 2007. FSKD 2007. IEEE, Vol. 2, pp. 390–394.Google Scholar
  39. 39.
    Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015a). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.CrossRefGoogle Scholar
  40. 40.
    Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015b). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.CrossRefGoogle Scholar
  41. 41.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In: IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS), 2013, pp. 182–190.Google Scholar
  42. 42.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRefGoogle Scholar
  43. 43.
    Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained qos multicast routing based on the genetic algorithm for manets. Mathematical and Computer Modelling, 53(11), 2238–2250.CrossRefGoogle Scholar
  44. 44.
    Youssef, M., IBRAHIM, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys Tutorials, 16(1), 92–109.CrossRefGoogle Scholar
  45. 45.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  46. 46.
    Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRefGoogle Scholar
  47. 47.
    Zhou, J., Cao, Z., Dong, X., Lin, X., & Vasilakos, A. V. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communications, 20(4), 12–21.CrossRefGoogle Scholar
  48. 48.
    Zhou, J., Cao, Z., Dong, X., Xiong, N., & Vasilakos, A. V. (2015a). 4s: A secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Information Sciences, 314, 255–276.CrossRefGoogle Scholar
  49. 49.
    Zhou, J., Dong, X., Cao, Z., & Vasilakos, A. V. (2015b). Secure and privacy preserving protocol for cloud-based vehicular dtns. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Information TechnologyNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations