Skip to main content
Log in

A cross-layer protocol for exploiting cooperative diversity in multi-hop wireless ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cooperative communication has emerged to reap the benefits of spatial diversity. To fully exploit cooperative diversity, we propose a medium access control and routing enabled cross-layer cooperative transmission (MACR-CCT) protocol for improving the performance in multi-hop wireless ad hoc networks (MWAN). Different from previous cooperative protocols that determine a receiver in one hop according to a non-cooperative routing protocol first and then select a cooperative relay, MACR-CCT selects the cooperative relay together with the receiver in one hop to exploit fully cooperative diversity, so that the receiver is selected for higher cooperative gain and closer distance to destination, and the relay is selected to achieve the better throughput performance while considering transmission error. Furthermore, considering that there are multiple source–destination pairs in MWAN, MACR-CCT takes interference mitigation into account to further improve network throughput when selecting the cooperative relay. Besides, we propose a theoretical model to analyze the throughput performance. Finally, we take advantage of simulation results to validate the effectiveness of our analytical model and show that our proposed MACR-CCT protocol can significantly outperform existing packet transmission mechanisms in terms of throughput and delay under the multi-hop multi-flow network scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang, X., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  3. Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: a game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  4. Liu, P., Tao, Z., Narayanan, S., et al. (2007). CoopMAC: A cooperative MAC for wireless LANs. IEEE Journal on Select Areas Communication, 25(2), 340–354.

    Article  Google Scholar 

  5. Zhu, H., & Cao, G. (2006). rDCF: A relay-enabled medium access control protocol for wireless ad hoc networks. IEEE Transactions on Mobile Computer, 5(9), 1201–1214.

    Article  Google Scholar 

  6. Guo, T., & Carrasco, R. (2009). CRBAR: cooperative relay-based auto rate MAC for multirate wireless networks. IEEE Transactions on Wireless Communications, 8(12), 5938–5947.

    Article  Google Scholar 

  7. Shan, H., Cheng, H. T., & Zhuang, W. (2011). Cross-layer cooperative MAC protocol in distributed wireless networks. IEEE Transactions on Wireless Communications, 10(8), 2603–2615.

    Article  Google Scholar 

  8. Cao, B., Feng, G., Li, Y., et al. (2014). Cooperative media access control with optimal relay selection in error-prone wireless networks. IEEE Transactions on Vehicular Technology, 63(1), 252–265.

    Article  Google Scholar 

  9. Moh, S., & Yu, C. (2011). A cooperative diversity-based robust MAC protocol in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 22(3), 353–363.

    Article  Google Scholar 

  10. He, X., & Li, F. Y. (2011). Cooperative MAC design in multi-hop wireless networks: Part I: When source and destination are within the transmission range of each other. Wireless Personal Communications, 57(3), 339–350.

    Article  Google Scholar 

  11. Ahmed, M. H. U., Razzaque, M. A., & Hong, C. S. (2013). DEC-MAC: delay- and energy-aware cooperative medium access control protocol for wireless sensor networks. Annals of Telecommunications, 68(9), 485–501.

    Article  Google Scholar 

  12. Wang, X., & Li, J. (2015). Improving the network lifetime of MANETs through cooperative MAC protocol design. IEEE Transactions on Parallel and Distributed Systems, 26(4), 1010–1020.

    Article  Google Scholar 

  13. Zhang, X., Guo, L., Wei, X., et al. (2013). An energy-balanced cooperative MAC protocol based on opportunistic relaying in MANETs. Computers & Electrical Engineering, 39(6), 1894–1904.

    Article  Google Scholar 

  14. Zhou, Y., Liu, J., & Zheng, L. (2011). Link-utility based cooperative MAC protocol for wireless multi-hop networks. IEEE Transactions on Wireless Communications, 10(3), 995–1005.

    Article  Google Scholar 

  15. Liu, K., Chang, X., Liu, F., et al. (2015). A cooperative MAC protocol with rapid relay selection for wireless ad hoc networks. Computer Networks, 91, 262–282.

    Article  Google Scholar 

  16. Khandani, A. E., Abounadi, J., Modiano, E., & Zhendg, L. (2003). Cooperative routing in wireless networks. In 41th Allerton confcrencc on communications, control and computing, pp. 1270–1279.

  17. Khandani, A. E., Abounadi, J., Modiano, E., et al. (2007). Cooperative routing in static wireless networks. IEEE Transactions on Communications, 55(11), 2185–2192.

    Article  Google Scholar 

  18. Ibrahim, A., Zhu, H., & Liu, K. J. R. (2008). Distributed energy-efficient cooperative routing in wireless networks. IEEE Transaction on Wireless Communications, 7(10), 3930–3941.

    Article  Google Scholar 

  19. Wang, L., & Liu, K. (2009). An throughput-optimized cooperative routing protocol in ad hoc network. In Proceedings of the 3rd IEEE international symposium on Microwave, Antenna, Propagation/EMC technology wireless communication, pp. 1255–1258.

  20. Chen, S., Huang, M., & Li, Y., Zhu, Y., & Wang, Y. (2012). Energy-balanced cooperative routing in multihop wireless ad hoc networks. In IEEE international conference on communications (ICC’12), pp. 307–311.

  21. Lakshmanan, S., & Sivakumar, R. (2013). Proteus: Multi-flow diversity routing for wireless networks with cooperative transmissions. IEEE Transactions on Mobile Computing, 12(6), 1146–1159.

    Article  Google Scholar 

  22. Li, F., Wu, K., & Lippman, A. (2006). Energy-efficient cooperative routing in multi-hop wireless ad hoc Networks. In IPCCC, 2006, 215–222.

    Google Scholar 

  23. Sheng, Z., Ding, Z., & Leung, K. K. (2009). Distributed and power efficient routing in wireless cooperative networks. In IEEE international conference on communications (ICC’09), pp. 1–5.

  24. Guan, Y., Xiao, Y., Shen, C. C., & Cimini, L. (2011). CSR: Cooperative source routing using virtual MISO in wireless ad hoc networks. In IEEE wireless communications and networking conference (WCNC), pp. 1119–1124.

  25. Zhang, J., & Zhang, Q. (2008). Cooperative routing in multi-source multi-destination multi-hop wireless networks. In 27th IEEE conference on computer communications (INFOCOM’08), pp. 2369–2377.

  26. Sharma, S., Shi, Y., Hou, Y. T., et al. (2012). Joint flow routing and relay node assignment in cooperative multi-hop networks. IEEE Journal on Selected Areas in Communications, 30(2), 254–262.

    Article  Google Scholar 

  27. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  28. Jakllari, G., Krishnamurthy, S. V., & Faloutsos, M. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6, 579–594.

    Article  Google Scholar 

  29. Babaee, R., & Beaulieu, N. C. (2010). Cross-layer design for multihop wireless relaying networks. IEEE Transaction on Wireless Communications, 9(11), 3522–3531.

    Article  Google Scholar 

  30. Aguilar, T., Syue, S. J., & Gauthier, V. (2011). CoopGeo: A beaconless geographic cross-layer protocol for cooperative wireless ad hoc networks. IEEE Transaction on Wireless Communications, 10(8), 2554–2565.

    Article  Google Scholar 

  31. He, X., & Li, F. Y. (2012). Metric-based cooperative routing in multihop ad hoc networks. Journal of Computer Networks and Communications, 2012, 1–12. doi:10.1155/2012/893867.

    Article  Google Scholar 

  32. Gokturk, M. S., Gurbuz, O., & Erkip, E. (2013). A cross-layer multi-hop cooperative network architecture for wireless ad hoc networks. Computer Networks, 57(18), 4010–4029.

    Article  Google Scholar 

  33. Bletsas, A., Khisti, A., Reed, D. P., et al. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  34. Zhu, Y., & Zheng, H. (2008). Understanding the impact of interference on collaborative relays. IEEE Transactions on Mobile Computing, 7(6), 724–736.

    Article  Google Scholar 

  35. Mauve, M., Widmer, J., & Hartenstein, H. (2001). A survey on position based routing in mobile ad-hoc networks. IEEE Network Magazine, 15(6), 30–39.

    Article  Google Scholar 

  36. Karp, B., & Kung, H. (2000). Gpsr: Greedy perimeter stateless routing for wireless networks. In ACM MOBICOM’00, pp. 243–254.

  37. Zeng, K., Yang, Z., & Lou, W. (2008). Location-aided opportunistic forwarding in multirate and multihop wireless networks. IEEE Transactions on Vehicular Technology, 58(6), 3032–3040.

    Article  Google Scholar 

  38. IEEE Std. 802.11. (1999). IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications.

  39. Melodia, T., Pompili, D., & Akyildiz, I. F. (2004). Optimal local topology knowledge for energy efficient geographical routing in sensor networks. In 23th IEEE conference on computer communications (INFOCOM’04), pp. 1705–1716.

  40. Zhou, Y., & Zhuang, W. (2013). Beneficial cooperation ratio in multi-hop wireless ad hoc networks. In IEEE INFOCOM 2013, pp. 250–254

  41. Li, Y., Zhu, X., Liao, C., & Daneshmand, M. (2013). Relay selection considering MAC overhead and collision in wireless networks. In IEEE wireless communications and networking conference, pp. 1592–1596.

  42. Sobrinho, J. L., & Krishnakumar, A. S. (1999). Quality of service in ad hoc carrier sense multiple access wireless networks. IEEE Journal on Selected Areas Communications, 17(8), 1353–1368.

    Article  Google Scholar 

  43. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  44. Fall, K., & Varadhan, K. (2011). The NS manual. http://www.isi.edu/nsnam/ns/doc/index.html.

  45. Song, Y., Zhu, X., Fang, Y., & Zhang, H. (2010). Threshold optimization for rate adaptation algorithms in IEEE 802.11 WLANs. IEEE Transaction on Wireless Communications, 9(1), 318–327.

Download references

Acknowledgments

This work is funded by China Postdoctoral Science Foundation (Grant No. 2014M561627), Natural Science Foundation of Anhui Province (Grant Nos. 1308085MF101 and 1408085MF130), and Natural Science Foundation of Anhui Higher Education Institutions (Grant Nos. KJ2014A172 and KJ2013A229)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhou, X. & Ge, F. A cross-layer protocol for exploiting cooperative diversity in multi-hop wireless ad hoc networks. Wireless Netw 23, 1591–1610 (2017). https://doi.org/10.1007/s11276-016-1238-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1238-7

Keywords

Navigation