Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks

Abstract

Wireless body area networks are captivating growing interest because of their suitability for wide range of applications. However, network lifetime is one of the most prominent barriers in deploying these networks for most applications. Moreover, most of these applications have stringent QoS requirements such as delay and throughput. In this paper, the modified superframe structure of IEEE 802.15.4 based MAC protocol is proposed which addresses the aforementioned problems and improves the energy consumption efficiency. Moreover, priority guaranteed CSMA/CA mechanism is used where different priorities are assigned to body nodes by adjusting the data type and size. In order to save energy, a wake-up radio based mechanism to control sleep and active modes of body sensors are used. Furthermore, a discrete time finite state Markov model to find the node states is used. Analytical expressions are derived to model and analyze the behavior of average energy consumption, throughput, packet drop probability, and average delay during normal and emergency data. Extensive simulations are conducted for analysis and validation of the proposed mechanism. Results show that the average energy consumption and delay are relatively higher during emergency data transmission with acknowledgment mode due to data collision and retransmission.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Ahmad, A., Javaid, N., Khan, Z. A., Imran, M., & Alnuem, M. (2014). iA-MAC: improved Adaptive Medium Access Control protocol for Wireless Body Area Networks. In Proceedings of the 14th international symposium on communications and information technologies (pp. 156–160), Sept 26–26, 2014, Incheon, Korea.

  2. 2.

    Fang, G., & Dutkiewicz, E. (2009). BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. In 9th International symposium on communications and information technology (pp. 1455–1459). IEEE, ISCIT, 2009.

  3. 3.

    Marinkovic, S., Spagnol, C., & Popovici, E. (2009). Energy-efficient TDMA-based MAC protocol for wireless body area networks In Third international conference on sensor technologies and applications. SENSORCOMM’09 (pp. 604–609). IEEE, 2009.

  4. 4.

    Semprebom, Tiago, Montez, C., & Vasques, F. (2013). (m, k)-firm pattern spinning to improve the GTS allocation of periodic messages in IEEE 802.15. 4 networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–15.

    Google Scholar 

  5. 5.

    Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15. 4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.

    Article  Google Scholar 

  6. 6.

    Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communication, 7(9), 33593371.

    Article  Google Scholar 

  7. 7.

    Johansson, P., Kazantzidis, M., Kapoor, R., & Gerla, M. (2001). Bluetooth: An enabler for personal area networking. IEEE Network, 15(5), 28–37. doi:10.1109/65.953231.

    Article  Google Scholar 

  8. 8.

    Bangash, J. I., Abdullah, A. H., Anisi, M. H., & Khan, A. W. (2014). A survey of routing protocols in wireless body sensor networks. Sensors, 14(1), 1322–1357.

    Article  Google Scholar 

  9. 9.

    Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys and Tutorials, 16(3), 1635–1657. doi:10.1109/SURV.2014.012214.00007.

    Article  Google Scholar 

  10. 10.

    Hayajneh, T., Almashaqbeh, G., Ullah, S., & Vasilakos, A. V. (2014). A survey of wireless technologies coexistence in WBAN: Analysis and open research issues. Wireless Networks, 20(8), 2165–2199. doi:10.1007/s11276-014-0736-8.

    Article  Google Scholar 

  11. 11.

    Ullah, S. (2013). RFID-enabled MAC protocol for WBAN. In IEEE international conference on communications (ICC) (pp. 6030–6034). IEEE, 2013.

  12. 12.

    Ullah, S., & Kwak, K. S. (2012). An ultra-low-power and traffic-adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 36(3), 1021–1030.

    Article  Google Scholar 

  13. 13.

    Ameen, M. A., Ullah, N., Chowdhury, M. S., Islam, S. R., & Kwak, K. (2012). A power efficient MAC protocol for wireless body area networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–17.

    Article  Google Scholar 

  14. 14.

    Ullah, S., Higgins, H., Shen, B., & Kwak, K. S. (2010). On the implant communication and MAC protocols for WBAN. International Journal of Communication Systems, 23(8), 982–999.

    Google Scholar 

  15. 15.

    Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564. doi:10.1109/TPDS.2012.159.

    Article  Google Scholar 

  16. 16.

    Javaid, N., Ahmad, A., Rahim, A., Khan, Z. A., Ishfaq, M., & Qasim, U. (2014). Adaptive medium access control protocol for wireless body area networks. International Journal of Distributed Sensor Networks. doi:10.1155/2014/254397.

    Google Scholar 

  17. 17.

    Rahim, A., Javaid, N., Aslam, M., Rahman, Z., Qasim, U., & Khan, Z. A. (2012) A comprehensive survey of MAC protocols for wireless body area networks. In Seventh international conference on broadband, wireless computing, communication and applications (BWCCA) (pp. 434–439), 12–14. doi:10.1109/BWCCA.2012.77.

  18. 18.

    Ullah, S., Imran, M., & Alnuem, M. (2014). A hybrid and secure priority-guaranteed MAC protocol for wireless body area network. International Journal of Distributed Sensor Networks, 2014, 481761. doi:10.1155/2014/481761.

    Article  Google Scholar 

  19. 19.

    Liu, B., Yan, Z., & Chen, C. W. (2013). MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design. IEEE Wireless Communications, 20(4), 64–72.

    Article  Google Scholar 

  20. 20.

    Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15. 4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.

    Article  Google Scholar 

  21. 21.

    Park, P., Fischione, C., & Johansson, K. H. (2013). Modeling and stability analysis of hybrid multiple access in the IEEE 802.15.4 protocol. ACM Transactions on Sensor Networks (TOSN), 9(2), 13–30.

    Article  Google Scholar 

  22. 22.

    Almashaqbeh, G., Hayajneh, T., Vasilakos, A. V., & Mohd, B. J. (2014). QoS-aware health monitoring system using cloud-based WBANs. Journal of Medical Systems, 38(121), 1–20. doi:10.1007/s10916-014-0121-2.

    Google Scholar 

  23. 23.

    Almashaqbeh, G., Hayajneh, T., & Vasilakos, A. V. (2014) A cloud-based interference-aware remote health monitoring system for non-hospitalized patients. In Proceedings of the IEEE 12th global communication conference (IEEE Globecom’14), Austin, TX, USA, 2014.

  24. 24.

    Khan, Z. A., Rasheed, M. B., Javaid, N., & Robertson, B. (2014). Effect of packet interarrival time on the energy consumption of beacon enabled MAC protocol for body area networks. Procedia Computer Science, 32, 579–586.

    Article  Google Scholar 

  25. 25.

    Pletcher, N., Gambini, S., & Rabaey, J. M. (2008). A 2 GHz 52 W wake-up receiver with 72 dBm sensitivity using uncertain-IF architecture. In Conference proceedings, IEEE international solidstate circuits conference, San Francisco, CA (pp 525–526), 2008.

  26. 26.

    Ansari, J., Pankin, D., & Mhnen, P. (2009). Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. International Journal of Wireless Information Networks, 16(3), 118–130.

    Article  Google Scholar 

  27. 27.

    Gu, L., & Stankovic, J. A. (2004) Radio-triggered wake-up capability for sensor networks. In Proceedings of 10th IEEE Real-time and embedded technology and applications symposium, RTAS (pp. 27–36), 25–28. doi:10.1109/RTTAS.2004.1317246.

  28. 28.

    Bas, V. D., Kavelaars, W., & Langendoen, K. (2009). A prototype low-cost wakeup radio for the 868 MHz band. International Journal of Sensor Networks, 5(1), 22–32.

    Article  Google Scholar 

  29. 29.

    Zhu, J., Chunfend, L., & Tao, Z. (2013). Performance analyses and improvements for IEEE 802.15.4 CSMA/CA scheme in wireless multihop sensor networks based on HTC algorithm. International Journal of Distributed Sensor Networks, 2013, 452423. doi:10.1155/2013/452423.

    Article  Google Scholar 

  30. 30.

    Enz, C. C., Hoiydi, A. E., Decotignie, J. D., & Peiris, V. (2004). WiseNET: An ultralow power wireless sensor network solution. Computer, 37(8), 62–70. doi:10.1109/MC.2004.109.

    Article  Google Scholar 

  31. 31.

    Levy, Y., & Yechiali, U. (1975). Utilization of idle time in an M/G/1 queueing system. Management Science, 22(2), 202–211.

    Article  MATH  Google Scholar 

  32. 32.

    Hayes, J. F., & Babu, T. V. J. G. (2004). Modeling and analysis of telecommunications networks. New York: Wiley.

    Google Scholar 

  33. 33.

    http://standards.ieee.org/about/get/802/802.15.html.

  34. 34.

    Pletcher, N., Gambini, S., & Rabaey, J. (2007). A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes. In Custom integrated circuits conference (CICC), Sep 16–19, San Jose, CA.

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research through Research Group Project NO. (RG#1435-051).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasheed, M.B., Javaid, N., Imran, M. et al. Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Netw 23, 1249–1266 (2017). https://doi.org/10.1007/s11276-016-1199-x

Download citation

Keywords

  • Wireless body area networks
  • Slotted CSMA/CA protocol
  • Inter-arrival time
  • Wakeup radio mechanism