Wireless Networks

, Volume 23, Issue 2, pp 533–551 | Cite as

Efficient topology construction and routing for IEEE 802.15.4m-based smart grid networks

  • Jaebeom Kim
  • Jina Han
  • Zeeshan Hameed Mir
  • Young-Bae Ko


IEEE 802.15.4m TVWS Multi-Channel Tree PAN (TMCTP) standard that uses the vacant TV frequency of a region is the key to provide a flexible, scalable and cost-effective AMI smart grid networks. However, the performance of the IEEE 802.15.4m based AMI network can suffer from network interruption, varying transmission reliability and energy consumption problems due to the excessive number of channels and periodic channel scanning. To resolve these issues, we presented an enhanced IEEE 802.15.4m TMCTP called TVWS Orphan channel scanning with Multi-Channel Tree PAN Routing (TOMTPR). The proposed TOMTPR framework includes pilot-channel based Multi-Channel beaconing and interleaving-based TVWS orphan channel scanning. Furthermore, a capacity-aware routing tree is constructed during the neighbor discovery procedure. The proposed protocol suite is designed to provide compatibility with the IEEE 802.15.4 family standards with lower architecture complexity. The simulation results in presence of realistic AMI traffic and AMI network model show that TOMTPR can not only satisfy delay requirements of the AMI traffic, but also outperforms IEEE 802.15.4m TMCTP with IEEE 802.15.5 layer 2 mesh routing in terms of topology construction delay, end-to-end transmission reliability, and energy efficiency.


TV white space IEEE 802.15.4m Smart grid network Wireless advanced metering infrastructure 



Following are results of a study on the “Leades INdustry-university Cooperation” Project, supported by the Ministry of Education, Science & Technology (MEST).


  1. 1.
    Son, S., & Chung, B. (2009). A korean smart grid architecture design for a field test based on power IT. In IEEE PES T&D: Asia and Pacific, Seoul, Korea.Google Scholar
  2. 2.
    OECD (2009). Towards green ICT strategies: Accessing policies and programmers on ICT and the environment. OECD Digital Economy Papers.Google Scholar
  3. 3.
    Bryson, J., & Gallagher, P. (2012). NIST framework and roadmap for smart grid interoperability standards, release 2.0. National Institute of Standards and Technology (NIST), Tech. Rep. NIST Special Publication 1108R2. Google Scholar
  4. 4.
    Erol-Kantarci, M., & Mouftah, H. (2011). Wireless sensor networks for smart grid applications. In IEEE SIECPC, Riyadh, Saudi Arabia.Google Scholar
  5. 5.
    Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 629–639.CrossRefGoogle Scholar
  6. 6.
    Kim, J., Kim, D., Lim, K., Ko, Y., & Lee, S. (2012). Improving the reliability of IEEE 802.11s based wireless mesh networks for smart grid systems. Journal of Communications and Networks KICS, 14(6), 629–639.Google Scholar
  7. 7.
    Yu, R., Zhang, Y., Gjessing, S., Yuen, C., Xie, S., & Guizani, M. (2011). Cognitive radio based hierarchical communications infrastructure for smart grid. Network, IEEE, 25(5), 6–14.CrossRefGoogle Scholar
  8. 8.
    Luan, W., Sharp, D., & Lancashire, S. (2010). Smart grid communication network capacity planning for power utilities. In IEEE PES, New Orleans, USA.Google Scholar
  9. 9.
    Sheng, Z. et al. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications 20(6), 91–98.CrossRefGoogle Scholar
  10. 10.
    Noguet, D., Gautier, M., & Berg, V. (2011). Advances in opportunistic radio technologies for TVWS. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–12.CrossRefGoogle Scholar
  11. 11.
    Sum, C., Lu, L., Zhou, M., Kojima, F., & Harada, H. (2013). Design considerations of IEEE 802.15. 4 m low-rate WPAN in TV white space. Communications Magazine, IEEE, 51(4), 74–82.CrossRefGoogle Scholar
  12. 12.
    Ruofei, M., Chen, H., Huang, Y., & Meng, W. (2013). Smart grid communication: Its challenges and opportunities. IEEE Transactions on Smart Grid, 4(1), 36–46.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. Network, IEEE, 26(3), 6–13.CrossRefGoogle Scholar
  14. 14.
    802.15.4m, I. S. (2014). IEEE standard for local and metropolitan area networksPart 15.4: Low-rate wireless personal area networks (LR-WPANs)amendment 6: TV white space between 54 MHz and 862 MHz physical layer.Google Scholar
  15. 15.
    Sum, C., Zhou, M., Lu, L., Funada, R., Kojima, F., & Harada, H. (2012). IEEE 802.15. 4 m: The first low rate wireless personal area networks operating in TV white space. In IEEE ICON, Singapore, Singapore.Google Scholar
  16. 16.
    Romaniello, G., Potetsianakis, E., Alphand, O., Guizzetti, R., & Duda, A. (2013). Fast and energy-efficient topology construction in multi-hop Multi-Channel 802.15.4 networks. In IEEE WiMob, Lyon, France.Google Scholar
  17. 17.
    Karowski, N., Viana, A., & Wolisz, A. (2011). Optimized asynchronous multi-channel neighbor discovery. In IEEE INFOCOM, Shanghai, China.Google Scholar
  18. 18.
    Herberg, U., & Clausen, T. (2011). A comparative performance study of the routing protocols LOAD and RPL with bi-directional traffic in low-power and lossy networks. In ACM PE-WASUN, New York, USA.Google Scholar
  19. 19.
    Popa, D., Jetcheva, J., Dejean, N., Salazar, R., Hui, J., & Monden, K. (2013). Applicability statement for the routing protocol for low power and lossy networks (RPL) in AMI networks. Internet Draft.Google Scholar
  20. 20.
    Lee, M., Zhang, R., Zheng, J., Ahn, G., Zhu, C., Park, T., et al. (2010). IEEE 802.15.5 WPAN mesh standard-low rate part: Meshing the wireless sensor networks. IEEE Journal on Selected Areas in Communications, 28(7), 973–983. Google Scholar
  21. 21.
    Sauter, T., & Lobashov, M. (2011). End-to-end communication architecture for smart grids. IEEE Transactions on Industrial Electronics, 58(4), 1218–1228.CrossRefGoogle Scholar
  22. 22.
    Merlin, S., Vaidya N., & Zorzi, M. (2008). Resource allocation in multi-radio Multi-Channel multi-hop wireless networks. In IEEE INFOCOM, Phoenix, USA.Google Scholar
  23. 23.
    Chilamkurti, N. et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. Google Scholar
  24. 24.
    Zhang, X. M., et al. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRefGoogle Scholar
  25. 25.
    Meng, T. et al. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS, Hangzhou, 14–16 Oct. 2013, pp. 182–190. doi: 10.1109/MASS.2013.44.
  27. 27.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRefGoogle Scholar
  28. 28.
    Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRefGoogle Scholar
  29. 29.
    Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRefGoogle Scholar
  31. 31.
    Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via “quality of routing. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRefGoogle Scholar
  33. 33.
    Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.Google Scholar
  34. 34.
    Vilajosana, X., Tuset-Peiro, P., Vazquez-Gallego, F., Alonso-Zarate, J., & Alonso, L. (2014). standardized low-power wireless communication technologies for distributed sensing applications. Sensors, 14(2), 2663–2682.CrossRefGoogle Scholar
  35. 35.
    Cuomo, F., & Abbagnale, A. (2013). Cross-layer network formation for energy-efficient IEEE 802.15. 4/ZigBee wireless sensor networks. Ad Hoc Networks, 11(2), 672–686.CrossRefGoogle Scholar
  36. 36.
    What exactly is Advanced Television Systems Committee.
  37. 37.
    Hossain, K., & Champagne, B. (2011). Wideband spectrum sensing for cognitive radios with correlated subband occupancy. IEEE on Signal Processing Letters, 18(1), 35–38.CrossRefGoogle Scholar
  38. 38.
    Chan, A., Zeng, K., Mohapatra, P., & Lee, S. (2010). Metrics for evaluating video streaming quality in lossy IEEE 802.11 wireless networks. In IEEE INFOCOM, San diego, USA.Google Scholar
  39. 39.
    Kaabi, F., Ghannay, S., & Filali, F. (2010). Channel allocation and routing in wireless mesh networks: A survey and qualitative comparison between schemes. International Journal of Wireless and Mobile Network, 2(1), 132–151.Google Scholar
  40. 40.
    SX1272/73—860 MHz to 1020 MHz Low Power Long Range Transceiver.
  41. 41.
    Mohassel, R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014). A survey on advanced metering infrastructure. International Journal of Electrical Power & Energy Systems, 63, 473–484.CrossRefGoogle Scholar
  42. 42.
    Kim, J., Han, J., Ko, Y-B., & Filali, F. (2015). Interleaving-based orphan channel scanning for the IEEE 802.15.4m in TVWS Smart Grid Networks. In IEEE ICUFN, Sapprro, Japan.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jaebeom Kim
    • 1
  • Jina Han
    • 1
  • Zeeshan Hameed Mir
    • 2
  • Young-Bae Ko
    • 1
  1. 1.Graduate School of Computer EngineeringAjou UniversitySuwonRepublic of Korea
  2. 2.Qatar Mobility Innovations Center (QMIC)Qatar Science and Technology Park (QSTP)DohaQatar

Personalised recommendations