Skip to main content
Log in

An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In many applications of wireless sensor network, the position of the sensor node is useful to identify the actuating response of the environment. The main idea of the proposed localization scheme is similar with most of the existing localization schemes, where a mobile beacon with global positioning system broadcast its current location coordinate periodically. The received information of the coordinates help other unknown nodes to localize themselves. In this paper, we proposed a localization scheme using mobile beacon points based on analytical geometry. Sensor node initially choose two distant beacon points, in-order to minimize its residence area. Later using the residence area, sensor node approximate the radius and half length of the chord with reference to one of the distant beacon point. Then the radius and half length of the chord are used to estimate the sagitta of an arc. Later, sensor node estimate its position using radius, half length of the chord, and sagitta of an arc. Simulation result shows the performance evaluation of our proposed scheme on various trajectories of mobile beacon such as CIRCLE, SPIRAL, S-CURVE, and HILBERT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  2. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  3. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190). IEEE.

  4. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  5. Pathirana, P. N., Bulusu, N., Savkin, A. V., & Jha, S. (2005). Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing, 4(3), 285–296.

    Article  Google Scholar 

  6. Galstyan, A., Krishnamachari, B., Lerman, K., & Pattem, S. (2004). Distributed online localization in sensor networks using a moving target. In IPSN 2004 third international symposium on information processing in sensor networks (pp. 61–70). IEEE.

  7. Sichitiu, M. L., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. In IEEE international conference on mobile ad-hoc and sensor systems (pp. 174–183). IEEE.

  8. Corke, P., Peterson, R., & Rus, D. (2005). Networked robots: Flying robot navigation using a sensor net. In Robotics research: The eleventh international symposium (pp. 234–243). Berlin: Springer .

  9. Karim, L., Nasser, N., Mahmoud, Q. H., Anpalagan, A., & Salti, T. E. (2015). Range-free localization approach for M2M communication system using mobile anchor nodes. Journal of Network and Computer Applications, 47, 137–146.

    Article  Google Scholar 

  10. Cui, H., & Wang, Y. (2012). Four-mobile-beacon assisted localization in three-dimensional wireless sensor networks. Computers and Electrical Engineering, 38(3), 652–661.

    Article  Google Scholar 

  11. Gholami, M., Cai, N., & Brennan, R. W. (2012). Evaluating alternative approaches to mobile object localization in wireless sensor networks with passive architecture. Computers in Industry, 63(9), 941–947.

    Article  Google Scholar 

  12. Zhou, Z., Peng, Z., Cui, J. H., Shi, Z., & Bagtzoglou, A. C. (2011). Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing, 10(3), 335–348.

    Article  Google Scholar 

  13. Liu, X., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., & Wu, M. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  14. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  15. Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2014). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.

    Article  MathSciNet  Google Scholar 

  16. Zeng, Y., Li, D., & Vasilakos, A. V. (2013). Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators. Computer Communications, 36(9), 988–997.

    Article  Google Scholar 

  17. Han, G., Xu, H., Jiang, J., Shu, L., Hara, T., & Nishio, S. (2013). Path planning using a mobile anchor node based on trilateration in wireless sensor networks. Wireless Communications and Mobile Computing, 13(14), 1324–1336.

    Article  Google Scholar 

  18. Ssu, K. F., Ou, C. H., & Jiau, H. C. (2005). Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 54(3), 1187–1197.

    Article  Google Scholar 

  19. Lee, S., Kim, E., Kim, C., & Kim, K. (2009). Localization with a mobile beacon based on geometric constraints in wireless sensor networks. IEEE Transactions on Wireless Communications, 8(12), 5801–5805.

    Article  MATH  Google Scholar 

  20. Xiao, B., Chen, H., & Zhou, S. (2008). Distributed localization using a moving beacon in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 19(5), 587–600.

    Article  Google Scholar 

  21. Guerrero, E., Xiong, H. G., Gao, Q., Cova, G., Ricardo, R., & Estvez, J. (2009). ADAL: A distributed range-free localization algorithm based on a mobile beacon for wireless sensor networks. In ICUMT’09 international conference on ultra modern telecommunications and workshops (pp. 1–7). IEEE.

  22. Dong, L., & Severance, F. L. (2007). Position estimation with moving beacons in wireless sensor networks. In Wireless communications and networking conference. WCNC 2007 (pp. 2317–2321). IEEE.

  23. Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577–2592.

    Article  Google Scholar 

  24. Huang, R., & Zaruba, G. V. (2007). Static path planning for mobile beacons to localize sensor networks. In PerCom workshops’ 07. Fifth annual IEEE international conference on pervasive computing and communications workshops (pp. 323–330). IEEE.

  25. Hu, Z., Gu, D., Song, Z., & Li, H. (2008). Localization in wireless sensor networks using a mobile anchor node. In IEEE/ASME international conference on advanced intelligent mechatronics. AIM 2008 (pp. 602–607). IEEE.

  26. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on Mobile computing and networking (pp. 81–95). ACM.

  27. Vivekanandan, V., & Wong, V. W. (2007). Concentric anchor beacon localization algorithm for wireless sensor networks. IEEE Transactions on Vehicular Technology, 56(5), 2733–2744.

    Article  Google Scholar 

  28. Doherty, L., Pister, K. S., & El Ghaoui, L. (2001). Convex position estimation in wireless sensor networks. In Proceedings of twentieth annual joint conference of the IEEE computer and communications societies, INFOCOM 2001 (Vol. 3, pp. 1655–1663). IEEE.

  29. Liu, C., Scott, T., Wu, K., & Hoffman, D. (2007). Range-free sensor localization with ring overlapping based on comparison of received signal strength indicator. International Journal of Sensor Networks, 2(5–6), 399–413.

    Article  Google Scholar 

  30. Chen, Y. S., Ting, Y. J., Ke, C. H., Chilamkruti, N., & Park, J. H. (2013). Efficient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 12(2), 20.

    Article  Google Scholar 

  31. Woodward, E. (1978). Geometry-plane, solid and analytic problem solver, re-search and education association (p. 359). ISBN 9780878915101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munesh Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Khilar, P.M. An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network. Wireless Netw 22, 2537–2550 (2016). https://doi.org/10.1007/s11276-015-1116-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1116-8

Keywords

Navigation