Skip to main content

Advertisement

Log in

Distributed object tracking using moving trajectories in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Most recent research on object tracking sensor networks has focused on collecting all data from the sensor network into the sink, which delivers the predicted locations to the corresponding nodes in order to accurately predict object movement. The communication cost of this centralized scenario is higher than that of a distributed method. Centralized data collection affects the freshness of the data and increases latency in movement trajectory prediction. In addition, due to the large amount of packets being sent and received, sensor node energy is quickly exhausted. Although this data collection method might result in higher accuracy for prediction, the sensor network lifetime is not reduced. In this paper, a distributed object tracking method is proposed using the network structure of convex polygons, called faces. The nodes in the faces cooperate to find the trajectories of an object and then these trajectories are used to predict the objects’ movement. The proposed method, based on trajectory tree construction, can reduce both the storage space of collected trajectories and the time spent on trajectory prediction analysis. Simulations show that the proposed method can reduce the energy consumption of the nodes and make prediction of nodes moving direction accurately than the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. BonnMotion: A mobility scenario generation and analysis tool. http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion/.

  2. NS-2 (The Network Simulator Version 2). http://nsnam.isi.edu/nsnam/index.php.

  3. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., et al. (2004). A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks, 46(5), 605–634.

    Article  Google Scholar 

  4. Baggio, A., & Langendoen, K. (2006). Monte-Carlo localization for mobile wireless sensor networks. In Proceedings of the 2nd international conference on mobile ad-hoc and sensor networks (pp. 317–328). Hong Kong, China.

  5. Black, P. E. (2011). “trie”. In Dictionary of algorithms and data structures. http://www.nist.gov/dads/HTML/trie.html.

  6. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

  7. Chen, T.-S., Chou, Y.-S., & Chen, T.-C. (2012). Mining user movement behavior patterns in a mobile service environment. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 42(1), 87–101.

    Article  Google Scholar 

  8. Chen, T.-S., Peng, J.-J., Lee, D.-W., & Tsai, H.-W. (2011). Prediction-based object tracking and coverage in visual sensor networks. In Proceedings of the 7th international wireless communications and mobile computing conference (pp. 278–284). Istanbul, Turkey.

  9. Chen, H., & Sezaki, K. (2011). Distributed target tracking algorithm for wireless sensor networks. In Proceedings of the IEEE international conference on communications (pp. 1–5). Kyoto, Japan.

  10. Feldmann, M., & Franken, D. (2011). Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 59(4), 1409–1420.

    Article  Google Scholar 

  11. Gabriel, K. R., & Sokal, R. R. (1969). A new statistical approach to geographic variation analysis. Systematic Zoology, 18(3), 259–278.

    Article  Google Scholar 

  12. Gao, W., & Cao, G. H. (2010). Fine-grained mobility characterization: Steady and transient state behaviors. In Proceedings of the 11th ACM International Symposium on Mobile Ad Hoc Networking and Computing (pp. 61–70). Chicago, IL, USA.

  13. Han, J., Li, Z., & Tang, L. A. (2010). Mining moving object and traffic data. In Proceedings of the 15th international conference on database systems for advanced applications (Volume Part II, pp. 485–486). Tsukuba, Japan.

  14. Han, J., & Pei, J. (2014). Pattern-growth methods. In C. C. Aggarwal & J. Han (Eds.), Frequent pattern mining (pp. 65–81). Berlin: Springer.

    Google Scholar 

  15. Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD international conference on management of data (pp. 1–12). Dallas, TX.

  16. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 3005–3014). Island of Maui.

  17. Hinckley, K., Pausch, R., Goble, J. C., & Kassell, N. F. (1994). A survey of design issues in spatial input. In Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology (pp. 213–222). Marina del Rey, California, USA.

  18. Jin, G.-Y., Lu, X.-Y., & Park, M.-S. (2006). Dynamic clustering for object tracking in wireless sensor networks. In Proceedings of the 3rd International Symposium on Ubiquitous Computing Systems (pp. 200–209). Seoul, Korea.

  19. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th ACM/IEEE international conference on mobile computing and networking (pp. 243–254). Boston, Massachusetts.

  20. Kranakis, E., Singh, H., & Urrutia, J. (1999). Compass routing on geometric networks. In Proceedings of the 11th Canadian conference on computational geometry (pp. 51–54). Vancouver, Canada.

  21. Kuhn, F., Wattenhofer, R., Zhang, Y., & Zollinger, A. (2003). Geometric ad-hoc routing: Of theory and practice. In Proceedings of the 22nd ACM Symposium on the Principles of Distributed Computing (pp. 63–72). Boston, Massachusetts.

  22. Kulaib, A. R., Shubair, R. M., Al-Qutayri, M. A., & Ng, J. W. P. (2011). An overview of localization techniques for wireless sensor networks. In Proceedings of the international conference on innovations in information technology (pp. 167–172). Abu Dhabi, UAE.

  23. Li, D., Wong, K. D., Hu, Y. H., & Sayeed, A. M. (2002). Detection, classification, and tracking of targets. IEEE Signal Processing Magazine, 19(2), 17–29.

    Article  Google Scholar 

  24. Liang, F. M. (1983). Word Hy-phen-a-tion by Com-put-er. PhD thesis, Stanford University.

  25. Liang, B., & Haas, Z. J. (2003). Predictive distance-based mobility management for multidimensional PCS networks. IEEE/ACM Transactions on Networking, 11(5), 718–732.

    Article  Google Scholar 

  26. Lin, K., Hsieh, M.-H., & Tseng, V. S. (2010). A novel prediction-based strategy for object tracking in sensor networks by mining seamless temporal movement patterns. Expert Systems with Applications, 37(4), 2799–2807.

    Article  Google Scholar 

  27. Lu, E. H.-C., Tseng, V. S., & Yu, P. S. (2011). Mining cluster-based temporal mobile sequential patterns in location-based service environments. IEEE Transactions on Knowledge and Data Engineering, 23(6), 914–927.

    Article  Google Scholar 

  28. Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Proceedings of the 16th IEEE International Parallel & Distributed Processing Symposium (pp. 195–202). Fort Lauderdale, Florida.

  29. Rezazadeh, J., Moradi, M., Ismail, A. S., & Dutkiewicz, E. (2015). Impact of static trajectories on localization in wireless sensor networks. Wireless Networks, 21(3), 809–827.

    Article  Google Scholar 

  30. Roseveare, N., & Natarajan, B. (2011). Energy-aware distributed tracking in wireless sensor networks. In Proceedings of the IEEE wireless communications and networking conference (pp. 363–368). Cancun, Quintana Roo.

  31. Roth, S. D. (1982). Ray casting for modeling solids. Computer Graphics and Image Processing, 18(2), 109–144.

    Article  Google Scholar 

  32. Samarah, S., Al-Hajri, M., & Boukerche, A. (2011). A predictive energy-efficient technique to support object-tracking sensor networks. IEEE Transactions on Vehicular Technology60(2), 656–663.

    Article  Google Scholar 

  33. Sheu, J.-P., Hu, W.-K., & Lin, J.-C. (2010). Distributed localization scheme for mobile sensor networks. IEEE Transactions on Mobile Computing, 9(4), 516–526.

    Article  Google Scholar 

  34. Souza, É. L., Pazzi, R. W., & Nakamura, E. F. (2015). A prediction-based clustering algorithm for tracking targets in quantized areas for wireless sensor networks. Wireless Networks, 21(3), 2263–2278.

    Article  Google Scholar 

  35. Tsai, H.-W., Chu, C.-P., & Chen, T.-S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.

    Article  Google Scholar 

  36. Tseng, V. S., & Lin, K. W. (2005). Mining temporal moving patterns in object tracking sensor networks. In Proceedings of the international workshop on ubiquitous data management (pp. 105–112). Washington, DC.

  37. Tseng, V. S., & Lin, K. W. (2006). Efficient mining and prediction of user behavior patterns in mobile web systems. Information and Software Technology, 48(6), 357–369.

    Article  Google Scholar 

  38. Wang, G., Bhuiyan, M. Z. A., Cao, J., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.

    Article  Google Scholar 

  39. Wimalajeewa, T., & Jayaweera, S. K. (2010). Mobility assisted distributed tracking in hybrid sensor networks. In Proceeding of the IEEE international conference on communications (pp. 1–5). Cape Town.

  40. Xu, Y., & Lee, W.-C. (2003). On localized prediction for power efficient object tracking in sensor networks. In Proceedings of the 23rd international conference on distributed computing systems workshops (pp. 434–439). Providence, Rhode Island.

  41. Xu, Y., Winter, J., & Lee, W.-C. (2004). Prediction-based strategies for energy saving in object tracking sensor networks. In Proceedings of IEEE international conference on mobile data management (pp. 346–357). Berkeley, California.

  42. Yang, L., Chen, Y., Li, X.-Y., Xiao, C., Li, M., & Liu, Y. (2014). Tagoram: Real-time tracking of mobile RFID tags to high precision using COTS devices. In Proceedings of the 20th annual international conference on mobile computing and networking (pp. 237–248). Maui, Hawaii, USA.

  43. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  44. Zhang, D., Liu, Y., Guo, X., & Ni, L. M. (2013). RASS: A real-time, accurate, and scalable system for tracking transceiver-free objects. IEEE Transactions on Parallel and Distributed Systems, 24(5), 996–1008.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referees whose insightful comments helped us to improve the content and presentation of the paper. Additionally, this work was supported in part by Ministry of Science and Technology under Grants 101-2221-E-024-018, 102-2221-E-024-006, and 104-2221-E-024-005, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung-Shi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TS., Chen, JJ. & Wu, CH. Distributed object tracking using moving trajectories in wireless sensor networks. Wireless Netw 22, 2415–2437 (2016). https://doi.org/10.1007/s11276-015-1107-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1107-9

Keywords

Navigation