Skip to main content
Log in

Distributed power-source-aware routing in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Although many applications use battery-powered sensor nodes, in some applications battery- and mains-powered nodes coexist. In this paper, we present a distributed algorithm that considers using mains-powered devices to increase the lifetime of wireless sensor networks for such heterogeneous deployment scenarios. In the proposed algorithm, a backbone routing structure composed of mains-powered nodes, sink, and battery-powered nodes if required, is constructed to relay data packets to one or more sinks. The algorithm is fully distributed and can handle dynamic changes in the network, such as node additions and removals, as well as link failures. Our extensive ns-2 simulation results show that the proposed method is able to increase the network lifetime up to 40 % compared to the case in which battery- and mains-powered nodes are not differentiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boukerche, A., Cheng, X., & Linus, J. (2003). Energy-aware data-centric routing in microsensor networks. In Proceedings of the 6th ACM international workshop on modeling analysis and simulation of wireless and mobile systems (MSWIM ’03) (pp. 42–49). New York, NY, USA. doi:10.1145/940991.941000.

  2. Camilo, T., Silva, J. S., Rodrigues, A., & Boavida, F. (2007). GENSEN: A topology generator for real wireless sensor networks deployment. In: 5th IFIP workshop on software technologies for future embedded and ubiquitous systems.

  3. Cerpa, A., & Estrin, D. (2004). ASCENT: Adaptive self-configuring sensor networks topologies. IEEE Transactions on Mobile Computing, 3(3), 272–285. doi:10.1109/TMC.2004.16.

    Article  Google Scholar 

  4. Chalasani, S., & Conrad, J. (2008). A survey of energy harvesting sources for embedded systems. In IEEE SoutheastCon (pp. 442–447). doi:10.1109/SECON.2008.4494336.

  5. Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8(5), 481–494.

    Article  MATH  Google Scholar 

  6. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. doi:10.1155/2009/134165.

  7. Dai, F., & Wu, J. (2006). On constructing k-connected k-dominating set in wireless ad hoc and sensor networks. Journal of Parallel and Distributed Computing, 66(7), 947–958. doi:10.1016/j.jpdc.2005.12.010.

    Article  MATH  Google Scholar 

  8. Das, B., Sivakumar, R., & Bharghavan, V. (1997). Routing in ad hoc networks using a spine. In 6th international conference on computer communications and networks (ICCCN’97) (p. 34). doi:10.1109/ICCCN.1997.623288.

  9. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87.

    Article  Google Scholar 

  10. Feibel, W. (Ed.). (1995). Encyclopedia of networking (2nd ed.). The Network Press. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3596&rep=rep1&type=pdf.

  11. Gilbert, J., & Balouchi, F. (2008). Comparison of energy harvesting systems for wireless sensor networks. International Journal of Automation and Computing, 5(4), 334–347. doi:10.1007/s11633-008-0334-2.

    Article  Google Scholar 

  12. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  13. Hande, A., Polk, T., Walker, W., & Bhatia, D. (2007). Indoor solar energy harvesting for sensor network router nodes. Microprocessors and Microsystems, 31(6), 420–432. doi:10.1016/j.micpro.2007.02.006. Special Issue on Sensor Systems.

    Article  Google Scholar 

  14. IEEE Computer Society LAN/MAN Standards Committee. (2006). IEEE standard for local and metropolitan area networks—Part 15.4: Low-rate wireless personal area networks (LR-WPANs).

  15. Kansal, A., Hsu, J., Srivastava, M., & Raghunathan, V. (2006). Harvesting aware power management for sensor networks. In Proceedings of the 43rd annual design automation conference (DAC’06) (pp. 651–656). ACM, New York, NY, USA. doi:10.1145/1146909.1147075.

  16. Kashyap, A., Khuller, S., & Shayman, M. A. (2006). Relay placement for higher order connectivity in wireless sensor networks. In: INFOCOM.

  17. Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066. doi:10.3390/s8128037.

    Article  Google Scholar 

  18. Lee, S., Youn, B. D., & Jung, B. C. (2009). Robust segment-type energy harvester and its application to a wireless sensor. Smart Materials and Structures, 18(9), 095021.

    Article  Google Scholar 

  19. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  20. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., & Wu, M. Y. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  21. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  22. Ma, Y., Dala, S., Alwan, M., & Aylor, J. (2003). ROP: A resource oriented protocol for heterogeneous sensor networks. In: Virginia tech symposium on wireless personal communications.

  23. Mikhaylov, K., & Tervonen, J. (2011). Node’s power source type identification in wireless sensor networks. In: International conference on broadband and wireless computing, communication and applications (BWCCA’11) (pp. 521–525). doi:10.1109/BWCCA.2011.84.

  24. Park, C., & Chou, P. (2006). AmbiMax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes. In: 3rd annual IEEE communications society on sensor and ad hoc communications and networks (SECON ’06) (vol. 1, pp. 168–177). doi:10.1109/SAHCN.2006.288421.

  25. Prince-Pike, A. (2009). Power characterisation of a zigbee wireless network in a real time monitoring application. Ph.D. thesis, AUT University.

  26. Roundy, S., Steingart, D., Frechette, L., Wright, P., & Rabaey, J. (2004). Power sources for wireless sensor networks. In Wireless Sensor Networks, Lecture Notes in Computer Science (Vol. 2920, pp. 1–17). Berlin: Springer.

  27. Santi, P., & Simon, J. (2004). Silence is golden with high probability: Maintaining a connected backbone in wireless sensor networks. In Wireless Sensor Networks, Lecture Notes in Computer Science (Vol. 2920, pp. 106–121). Berlin Heidelberg: Springer.

  28. Seah, W. G., Eu, Z. A., & Tan, H. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)—Survey and challenges. In 1st international conference on wireless communication, vehicular technology, information theory and aerospace electronic systems technology (Wireless VITAE’09) (pp. 1–5). doi:10.1109/WIRELESSVITAE.2009.5172411.

  29. Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(6), 1093–1102.

    Article  Google Scholar 

  30. Simplot-Ryl, D., Stojmenovic, I., & Wu, J. (2005). Handbook of sensor networks, chap. 11. Energy-efficient backbone construction, broadcasting, and area coverage in sensor networks. (pp. 343–380). Wiley Series on Parallel and Distributed Computing. Wiley: New york.

  31. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  32. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461. doi:10.1109/SURV.2011.060710.00094.

    Article  Google Scholar 

  33. Tan, Y., & Panda, S. (2011). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58(9), 4424–4435. doi:10.1109/TIE.2010.2102321.

    Article  Google Scholar 

  34. Tekkalmaz, M., & Korpeoglu, I. (2010). Power-source-aware backbone routing in wireless sensor networks. In IEEE international conference on communication systems (ICCS’10) (pp. 46 –50). doi:10.1109/ICCS.2010.5686105.

  35. The Network Simulator ns-2. (2013). Retrieved July 8, 2013 from http://www.isi.edu/nsnam/ns/

  36. Voigt, T., Ritter, H., & Schiller, J. (2003). Utilizing solar power in wireless sensor networks. In: Proceedings of the 28th IEEE annual international conference on local computer networks (LCN’03) (pp. 416–422). doi:10.1109/LCN.2003.1243167.

  37. Watral, Z., & Michalski, A. (2013). Selected problems of power sources for wireless sensors networks. IEEE Instrumentation Measurement Magazine, 16(1), 37–43. doi:10.1109/MIM.2013.6417056.

    Article  Google Scholar 

  38. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In IEEE 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).

  39. Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on mobile computing and networking (MobiCom’01) (pp. 70–84). ACM, New York, NY, USA. doi:10.1145/381677.381685.

  40. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190).

  41. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823. doi:10.1109/TNET.2014.2306592.

    Article  Google Scholar 

  42. Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., & Singh, S. (2005). Exploiting Heterogeneity in Sensor Networks. In Proceedings of the 24th annual joint conference of the IEEE computer and communications societies (INFOCOM’05) (Vol. 2, pp. 878–890). doi:10.1109/INFCOM.2005.1498318.

  43. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK), Project Number 113E274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Tekkalmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekkalmaz, M., Korpeoglu, I. Distributed power-source-aware routing in wireless sensor networks. Wireless Netw 22, 1381–1399 (2016). https://doi.org/10.1007/s11276-015-1040-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1040-y

Keywords

Navigation