Skip to main content

Advertisement

Log in

A two-tier strategy for priority based critical event surveillance with wireless multimedia sensors

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Surveillance plays a vital role in protecting infrastructure facilities of a country and improving detection of cross-border activities. Compared to traditional surveillance systems, wireless multimedia sensor networks (WMSN) provide distinct advantages. In this paper we consider the problem of critical event surveillance in a region of interest with the help of WMSN. The challenge here is deployment cost, energy-efficient routing and preservation of coverage and connectivity of the network. To keep the deployment cost minimum, we propose a two-tier strategy consisting of (a) densely deployed low cost audio tier nodes and (b) sparsely placed high cost video tier nodes to monitor critical events occurring in a given area. The audio nodes perform the preliminary event detection task, whereas, the base station activates the rotatable-video nodes on a demand basis. Depending upon the cost of potential damage, an event is assigned a priority, and based upon that priority an event is assigned either energy efficient or a delay tolerant path along the audio and video tiers. We also propose two integer linear programming formulations MEAT and MEVT for minimization of energy consumption in audio and video tiers separately. We then present two approaches, namely Greedy and DCSEG, and compare them with a popular existing approach under various scenarios. Simulation results show considerable reduction in the number of active audio and video sensor nodes per event which leads to low deployment cost and reduction of average energy consumption in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

RoI :

Circular deployment

v 0 :

Sink

R c :

Communication range

h(u) :

Minimum hop count of node u from v 0

R sa :

Audio sensing radius

d(u) :

Node degree of u

R tha :

Audio threshold range

δ uv :

Normalized delay cost of uv edge

Φ :

Horizontal viewable angle

Ψ(u, v):

Energy cost between node u and v

\(\vec{v}\) :

Video working direction

Φ:

Maximum energy cost for an edge in the network

α:

Video azimuth angle

e uv :

Normalized energy cost of uv edge

β:

Video elevation angle

c uv :

Total cost of uv edge

D(α):

Set of possible values of α

w 1 :

Path delay weight

R s :

Video sensing radius

w 2 :

Energy consumption weight

FOV :

Field-of-view

V v :

Set of video nodes

References

  1. Ang, L. M., Seng, K. P., Chew, L. W., Yeong, L. S., & Chia, W. C. (2013). Wireless multimedia sensor network technology. In Wireless multimedia sensor networks on reconfigurable hardware (pp. 5–38). Berlin, Heidelberg: Springer.

  2. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  3. Kandris, D., Tsagkaropoulos, M., Politis, I., Tzes, A., & Kotsopoulos, S. (2011). Energy efficient and perceived QoS aware video routing over wireless multimedia sensor networks. Ad Hoc Networks, 9(4), 591–607.

    Article  Google Scholar 

  4. Aghdasi, H. S., Nasseri, S., & Abbaspour, M. (2013). Energy efficient camera node activation control in multi-tier wireless visual sensor networks. Wireless Networks, 19(5), 725–740.

    Article  Google Scholar 

  5. Lopes, C. E. R., Linhares, F. D., Santos, M. M., & Ruiz, L. B. (2007). A multi-tier, multimodal wireless sensor network for environmental monitoring. In J. Indulska, J. Ma, L. T. Yang, T. Ungerer & J. Cao (Eds.), Ubiquitous intelligence and computing (pp. 589–598). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  6. Mahasukhon, P., Sharif, H., Hempel, M., Zhou, T., Ma, T., & Shrestha, P. L. (2011). A study on energy efficient multi-tier multi-hop wireless sensor networks for freight-train monitoring. In 7th international wireless communications and mobile computing conference (IWCMC), 2011 (pp. 297–301).

  7. Wang, Y. C., Chen, Y. F., & Tseng, Y. C. (2012). Using rotatable and directional (R&D) sensors to achieve temporal coverage of objects and its surveillance application. IEEE Transactions on Mobile Computing, 11(8), 1358–1371.

    Article  Google Scholar 

  8. Yildiz, E., Akkaya, K., Sisikoglu, E., & Sir, M. Y. (2014). Optimal camera placement for providing angular coverage in wireless video sensor networks. IEEE Transactions on Computers, 63(7), 1812–1825.

    Article  MathSciNet  Google Scholar 

  9. Tezcan, N., & Wang, W. (2006). TTS: A two-tiered scheduling algorithm for effective energy conservation in wireless sensor networks. In International conference on communications, 2006. ICC’06. IEEE (pp. 3359–3364).

  10. Ammari, H. M., & Das, S. K. (2011). Scheduling protocols for homogeneous and heterogeneous k-covered wireless sensor networks. Pervasive and Mobile Computing, 7(1), 79–97.

    Article  Google Scholar 

  11. Cai, Y., Lou, W., Li, M., & Li, X.-Y. (2009). Energy efficient target-oriented scheduling in directional sensor networks. IEEE Transactions on Computers, 58(9), 1259–1274.

    Article  MathSciNet  Google Scholar 

  12. Chen, J., Zhang, L., & Kuo, Y. (2013). Coverage-enhancing algorithm based on overlap-sense ratio in wireless multimedia sensor networks. Sensors Journal, IEEE, 13(6), 2077–2083.

    Article  Google Scholar 

  13. Ma, H., & Liu, Y. (2005). On coverage problems of directional sensor networks. In X. Jia, J. Wu & Y. He (Eds.), Mobile Ad hoc and sensor networks (pp. 721–731). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  14. Macit, M., Gungor, V. C., & Tuna, G. (2014). Comparison of QoS-aware single-path vs. multi-path routing protocols for image transmission in wireless multimedia sensor networks. Ad Hoc Networks, 19, 132–141.

    Article  Google Scholar 

  15. Sha, K., Gehlot, J., & Greve, R. (2013). Multipath routing techniques in wireless sensor networks: A survey. Wireless Personal Communications, 70(2), 807–829.

    Article  Google Scholar 

  16. England, D., Veeravalli, B., & Weissman, J. B. (2007). A robust spanning tree topology for data collection and dissemination in distributed environments. IEEE Transactions on Parallel and Distributed Systems, 18(5), 608–620.

    Article  Google Scholar 

  17. Upadhyayula, S., & Gupta, S. K. S. (2007). Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (dac) in wireless sensor networks. Ad Hoc Networks, 5(5), 626–648.

    Article  Google Scholar 

  18. Yin, L., Wang, C., & Øien, G. E. (2009). An energy-efficient routing protocol for event-driven dense wireless sensor networks. International Journal of Wireless Information Networks, 16(3), 154–164.

    Article  Google Scholar 

  19. Chang, J. H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 12(4), 609–619.

    Article  Google Scholar 

  20. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  21. Wu, Y., Li, X.-Y., Liu, Y. H., & Lou, W. (2010). Energy-efficient wake-up scheduling for data collection and aggregation. IEEE Transactions on Parallel and Distributed Systems, 21(2), 275–287.

    Article  Google Scholar 

  22. Chen, P., Ahammad, P., Boyer, C., Huang, S. I., Lin, L., Lobaton, E., … & Sastry, S. S. (2008). CITRIC: A low-bandwidth wireless camera network platform. In Second ACM/IEEE international conference on distributed smart cameras, 2008. ICDSC 2008 (pp. 1–10).

  23. Xiao, Y., Chen, H., Wu, K., Sun, B., Zhang, Y., Sun, X., & Liu, C. (2010). Coverage and detection of a randomized scheduling algorithm in wireless sensor networks. IEEE Transactions on Computers, 59(4), 507–521.

    Article  MathSciNet  Google Scholar 

  24. Pescaru, D., Istin, C., Curiac, D., & Doboli, A. (2008). Energy saving strategy for video-based wireless sensor networks under field coverage preservation. In International conference on automation, quality and testing, robotics, 2008. AQTR 2008. IEEE (pp. 289–294).

  25. Makhoul, A., Saadi, R., & Pham, C. (2009). Coverage and adaptive scheduling algorithms for criticality management on video wireless sensor networks. In International conference on ultra modern telecommunications & workshops, 2009. ICUMT’09 (pp. 1–8).

  26. Guo, P., Jiang, T., Zhang, Q., & Zhang, K. (2012). Sleep scheduling for critical event monitoring in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(2), 345–352.

    Article  Google Scholar 

  27. Cheng, M. X., Gong, X., Cai, L. I. N., & Jia, X. (2011). Cross-layer throughput optimization with power control in sensor networks. IEEE Transactions on Vehicular Technology, 60(7), 3300–3308.

    Article  Google Scholar 

  28. Osais, Y., St-Hilaire, M., & Yu, F. R. (2009). On sensor placement for directional wireless sensor networks. In International conference on communications, 2009. ICC’09. IEEE (pp. 1–5).

  29. Misra, S., Pavan Kumar, M., & Obaidat, M. S. (2011). Connectivity preserving localized coverage algorithm for area monitoring using wireless sensor networks. Computer Communications, 34(12), 1484–1496.

    Article  Google Scholar 

  30. Khedr, A. M., & Osamy, W. (2013). Minimum connected cover of a query region in heterogeneous wireless sensor networks. Information Sciences, 223, 153–163.

    Article  MathSciNet  Google Scholar 

  31. Alam, K. M., Kamruzzaman, J., Karmakar, G., & Murshed, M. (2012). Priority sensitive event detection in hybrid wireless sensor networks. In 21st international conference on computer communications and networks (ICCCN), 2012 (pp. 1–7).

  32. Bhatt, R., & Datta, R. (2014). Cost modelling and studies with different deployment strategies for wireless multimedia sensor network over flat and elevated terrains. International Journal of Wireless Information Networks, 21(1), 15–31.

    Article  Google Scholar 

  33. Onur, E., Ersoy, C., Deliç, H., & Akarun, L. (2007). Surveillance wireless sensor networks: deployment quality analysis. IEEE Network, 21(6), 48–53.

    Article  Google Scholar 

  34. O’Rourke, D., Jurdak, R., Liu, J., Moore, D., & Wark, T. (2009). On the feasibility of using servo-mechanisms in wireless multimedia sensor network deployments. In 34th conference on local computer networks, 2009. LCN 2009. IEEE (pp. 826–833).

  35. Chiasserini, C., & Garetto, M. (2006). An analytical model for wireless sensor networks with sleeping nodes. Mobile IEEE Transactions on Computing, 5(12), 1706–1718.

    Article  Google Scholar 

  36. Gu, L., & Stankovic, J. A. (2005). Radio-triggered wake-up for wireless sensor networks. Real-Time Systems, 29(2–3), 157–182.

    Article  Google Scholar 

  37. Bechkit, W., Koudil, M., Challal, Y., Bouabdallah, A., Souici, B., & Benatchba, K. (2012). A new weighted shortest path tree for convergecast traffic routing in WSN. In IEEE symposium on computers and communications (ISCC), 2012 (pp. 187–192).

  38. Le-Huy, P., & Roy, S. (2010). Low-power wake-up radio for wireless sensor networks. Mobile Networks and Applications, 15(2), 226–236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindara Bhatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, R., Datta, R. A two-tier strategy for priority based critical event surveillance with wireless multimedia sensors. Wireless Netw 22, 267–284 (2016). https://doi.org/10.1007/s11276-015-0971-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0971-7

Keywords

Navigation