Skip to main content
Log in

Self soft fault detection based routing protocol for vehicular ad hoc network in city environment

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Routing protocols in vehicular ad hoc network (VANET) mainly depends on the correct information provided by the neighbor vehicles in the form of beacons. If the on board unit is soft faulty, it provides incorrect data and reduces the performance of the system. In this paper, a novel self soft fault detection based routing protocol is proposed for VANET in city environment to send the data quickly to the destination by detecting the soft faulty vehicles. The vehicle itself detects whether it is soft faulty or fault free by using the decisions made by the neighbor vehicles and exclude itself from the routing process. The data is forwarded through the fault free vehicles in a mostly connected path. The best path is selected at every junction by finding path values for the paths connected to the junction. The path with the minimum path value is selected as the next path through which the data is forwarded. The performance of the fault detection method is evaluated by fault detection rate and false alarm rate. Simulation results show that, proposed protocol performs better than GyTAR, A-STAR, P-GEDIR, and GSR routing protocols in terms of end-to-end delay, number of network gaps, and path length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhoi, S. K., & Khilar, P. M. (2013). Vehicular communication: A survey. IET Networks, 3(3), 204–217.

    Article  Google Scholar 

  2. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.

    Article  Google Scholar 

  3. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.

    Article  Google Scholar 

  4. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  5. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  6. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  7. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  8. Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey. IEEE Communications Surveys & Tutorials, 10(2), 88–105.

    Article  Google Scholar 

  9. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  10. Hafeez, K. A., Zhao, L., Ma, B., & Mark, J. W. (2013). Performance analysis and enhancement of the DSRC for VANET’s safety applications. IEEE Transactions on Vehicular Technology, 62(7), 3069–3083.

    Article  Google Scholar 

  11. Toor, Y., Muhlethaler, P., & Laouiti, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, 10(3), 74–88.

    Article  Google Scholar 

  12. Booysen, M. J., Zeadally, S., & Van Rooyen, G. J. (2011). Survey of media access control protocols for vehicular ad hoc networks. IET communications, 5(11), 1619–1631.

    Article  Google Scholar 

  13. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(10), 1162–1182.

    Article  Google Scholar 

  14. Schoch, E., Kargl, F., Weber, M., & Leinmuller, T. (2008). Communication patterns in VANETs. IEEE Communications Magazine, 46(11), 119–125.

    Article  Google Scholar 

  15. Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 11(4), 19–41.

    Article  Google Scholar 

  16. Panda, M., & Khilar, P. M. (2015). Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test. Ad Hoc Networks, 25, 170–184.

    Article  Google Scholar 

  17. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  18. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).

  19. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  20. Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 34(1), 69–81.

    Article  Google Scholar 

  21. Lee, M. H., & Choi, Y. H. (2008). Fault detection of wireless sensor networks. Computer Communications, 31(14), 3469–3475.

    Article  Google Scholar 

  22. Chen, J., Kher, S., & Somani, A. (2006). Distributed fault detection of wireless sensor networks. In Proceedings of the 2006 workshop on dependability issues in wireless ad hoc networks and sensor networks (pp. 65–72).

  23. Xu, X., Chen, W., Wan, J., & Yu, R. (2008). Distributed fault diagnosis of wireless sensor networks. In 11th IEEE international conference on communication technology (pp. 148–151).

  24. Ding, M., Liu, F., Thaeler, A., Chen, D., & Cheng, X. (2007). Fault-tolerant target localization in sensor networks. EURASIP Journal on Wireless Communications and Networking, 2007(1), 19–19.

    Article  Google Scholar 

  25. Liu, K., Ma, Q., Zhao, X., & Liu, Y. (2011). Self-diagnosis for large scale wireless sensor networks. In INFOCOM, 2011 Proceedings IEEE (pp. 1539–1547).

  26. Ji, S., Shen-Fang, Y., Ma, T. H., & Tan, C. (2010). Distributed fault detection for wireless sensor based on weighted average. In 2010 second international conference on networks security wireless communications and trusted computing (NSWCTC) (Vol. 1, pp. 57–60).

  27. Clouqueur, T., Saluja, K. K., & Ramanathan, P. (2004). Fault tolerance in collaborative sensor networks for target detection. IEEE Transactions on Computers, 53(3), 320–333.

    Article  Google Scholar 

  28. Liu, C., Shu, Y., Yang, O., Xia, Z., & Xia, R. (2013). SDR: A stable direction-based routing for vehicular ad hoc networks. Wireless Personal Communications, 73(3), 1289–1308.

    Article  Google Scholar 

  29. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via” Quality of Routing & x201D; games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  30. Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  31. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190).

  32. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  33. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  34. Jabbarpour, M. R., Marefat, A., Jalooli, A., Noor, R. M., Khokhar, R. H., & Lloret, J. (2015). Performance analysis of V2V dynamic anchor position-based routing protocols. Wireless Networks, 21(3), 911–929.

    Article  Google Scholar 

  35. Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.

    Article  Google Scholar 

  36. Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications (NETWORKING) (pp. 989–999).

  37. Raw, R. S., & Das, S. (2013). Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wireless Personal Communications, 68(1), 65–78.

    Article  Google Scholar 

  38. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In IEEE intelligent vehicles symposium, 2003. Proceedings (IEEE) (pp. 156–161).

  39. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on mobile computing and networking (ICMCN) (pp. 243–254).

  40. Chen, Y. S., Lin, Y. W., & Pan, C. Y. (2011). DIR: Diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommunication Systems, 46(4), 299–316.

    Article  Google Scholar 

  41. Chou, L. D., Yang, J. Y., Hsieh, Y. C., Chang, D. C., & Tung, C. F. (2011). Intersection-based routing protocol for VANETs. Wireless Personal Communications, 60(1), 105–124.

    Article  Google Scholar 

  42. Cambruzzi, E., Farines, J., Macedo, R. J., & Kraus, W. (2010). An adaptive failure detection system for vehicular ad-hoc networks. In 2010 IEEE intelligent vehicles symposium (IV) (pp. 603–608).

  43. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  44. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 Proceedings IEEE (pp. 100–108).

  45. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  46. Vasilakos, A., Ricudis, C., Anagnostakis, K., Pedryca, W., & Pitsillides, A. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In The 1998 IEEE international conference on fuzzy systems proceedings, 1998. IEEE world congress on computational intelligence (Vol. 2, pp. 1488–1493).

  47. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, PP, 417–430.

  48. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. V. (2012). ReTrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Article  Google Scholar 

  49. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  50. Raya, M., Papadimitratos, P., Aad, I., Jungels, D., & Hubaux, J. P. (2007). Eviction of misbehaving and faulty nodes in vehicular networks. IEEE Journal on Selected Areas in Communications, 25(8), 1557–1568.

    Article  Google Scholar 

  51. Zhang, X., Dong, X., Xiong, N., Wu, J., & Li, X. (2014). Fault-aware flow control and multi-path routing in VANETs. Peer-to-Peer Networking and Applications. doi:10.1007/s12083-014-0302-2.

    Google Scholar 

  52. Huang, L., Meng, H., Tang, C., & Song, W. (2012). DIFO: Discovering faulty OBUs in VANETs. In 2012 9th IEEE international conference on fuzzy systems and knowledge discovery (FSKD) (pp. 2914–2918).

  53. Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234–1247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Kumar Bhoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoi, S.K., Khilar, P.M. Self soft fault detection based routing protocol for vehicular ad hoc network in city environment. Wireless Netw 22, 285–305 (2016). https://doi.org/10.1007/s11276-015-0970-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0970-8

Keywords

Navigation